Black Catholics
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
graph <- ns %>% | |
filter(religion == 2) %>% | |
mutate(race = frcode(race_ethnicity == 1 & hispanic == 1 ~ "White", | |
race_ethnicity == 2 ~ "Black", | |
hispanic >= 2 & hispanic <= 15 ~ "Hispanic", | |
race_ethnicity >= 4 & race_ethnicity <= 10 ~ "Asian", TRUE ~ "Something\nElse")) %>% | |
ct(race, wt = weight, show_na = FALSE) | |
graph %>% | |
ggplot(., aes(x = race, y = pct, fill = race)) + | |
geom_col(color = "black") + | |
theme_rb() + | |
y_pct() + | |
scale_fill_npg() + | |
lab_bar(top = TRUE, pos = .02, sz =5, type = pct) + | |
labs(x = "", y = "", title = "Racial Breakdown of Catholics", caption = "@ryanburge\nData: Nationscape 2019-2020") + | |
ggsave("E://cath_race_breakdown.png", type = "cairo-png", width = 4) | |
graph <- ns %>% | |
mutate(xtn = case_when(religion == 1 | religion == 5 ~ 1, TRUE ~ 0)) %>% | |
mutate(white = case_when(race_ethnicity == 1 & hispanic == 1 ~ 1)) %>% | |
mutate(grp = frcode(white == 1 & religion == 2 ~ "White Catholic", | |
race_ethnicity == 2 & religion == 2 ~ "Black Catholic", | |
race_ethnicity >= 2 & race_ethnicity <= 15 & religion == 2 ~ "Hispanic Catholic", | |
race_ethnicity == 2 & xtn == 1 ~ "Black Protestant")) %>% | |
mutate(pid = frcode(pid7 == 1 ~ "Str. Dem.", | |
pid7 == 2 ~ "Not Str. Dem.", | |
pid7 == 3 ~ "Lean Dem.", | |
pid7 == 4 ~ "Independent", | |
pid7 == 5 ~ "Lean Rep.", | |
pid7 == 6 ~ "Not Str. Rep.", | |
pid7 == 7 ~ "Str. Rep.")) %>% | |
group_by(grp) %>% | |
ct(pid, show_na = FALSE, wt = weight) | |
graph %>% | |
filter(grp != "NA") %>% | |
ggplot(., aes(x = 1, y = pct, fill = fct_rev(pid))) + | |
geom_col(color = "black") + | |
coord_flip() + | |
facet_wrap(~ grp, ncol =1, strip.position = "left") + | |
scale_fill_manual(values = c("#8D021F", "#B2182B","#EF8A62","azure4", "#67A9CF", "#2166AC", "#000080", "darkorchid")) + | |
theme_rb() + | |
theme(legend.position = "bottom") + | |
scale_y_continuous(labels = percent) + | |
theme(strip.text.y.left = element_text(angle = 0)) + | |
guides(fill = guide_legend(reverse=T, nrow = 1)) + | |
theme(axis.title.y=element_blank(), axis.text.y=element_blank(), axis.ticks.y=element_blank()) + | |
theme(panel.grid.minor.y=element_blank(), panel.grid.major.y=element_blank()) + | |
geom_text(aes(label = ifelse(pct >.05, paste0(pct*100, '%'), '')), position = position_stack(vjust = 0.5), size = 4, family = "font", color = "white") + | |
labs(x = "", y = "", title = "Partisan Distribution", subtitle = "", caption = "@ryanburge\nData: Nationscape 2019-2020") + | |
ggsave("E://black_cath_pid7.png", width = 9, height = 3) | |
gg <- cces16 %>% | |
mutate(grp = frcode(race == 1 & religpew == 2 ~ "White Catholic", | |
race == 2 & religpew == 2 ~ "Black Catholic", | |
race == 3 & religpew == 2 ~ "Hispanic Catholic", | |
race == 2 & religpew == 1 ~ "Black Protestant")) %>% | |
group_by(grp) %>% | |
mutate(vote = frcode(CC16_410a == 1 ~ "Trump", | |
CC16_410a == 2 ~ "Clinton", | |
CC16_410a == 3 | CC16_410a == 4 | CC16_410a == 5 | CC16_410a == 8 ~ "Third Party")) %>% | |
ct(vote, wt= commonweight_vv_post, show_na = FALSE) %>% | |
na.omit() | |
gg %>% | |
filter(grp != "NA") %>% | |
ggplot(., aes(x = 1, y = pct, fill = fct_rev(vote))) + | |
geom_col(color = "black") + | |
coord_flip() + | |
facet_wrap(~ grp, ncol =1, strip.position = "left") + | |
scale_fill_manual(values = c("darkorchid", "dodgerblue3", "firebrick3")) + | |
theme_rb() + | |
theme(legend.position = "bottom") + | |
scale_y_continuous(labels = percent) + | |
theme(strip.text.y.left = element_text(angle = 0)) + | |
guides(fill = guide_legend(reverse=T, nrow = 1)) + | |
theme(axis.title.y=element_blank(), axis.text.y=element_blank(), axis.ticks.y=element_blank()) + | |
theme(panel.grid.minor.y=element_blank(), panel.grid.major.y=element_blank()) + | |
geom_text(aes(label = ifelse(pct >.05, paste0(pct*100, '%'), '')), position = position_stack(vjust = 0.5), size = 4, family = "font", color = "white") + | |
labs(x = "", y = "", title = "Presidential Vote in 2016", subtitle = "", caption = "@ryanburge\nData: CCES 2016") + | |
ggsave("E://black_cath_vote16.png", width = 9, height = 3) | |
graph <- ns %>% | |
mutate(male = case_when(gender == 2 ~ 1, gender == 1 ~ 0)) %>% | |
mutate(xtn = case_when(religion == 1 | religion == 5 ~ 1, TRUE ~ 0)) %>% | |
mutate(white = case_when(race_ethnicity == 1 & hispanic == 1 ~ 1)) %>% | |
mutate(grp = frcode(white == 1 & religion == 2 ~ "White Catholic", | |
race_ethnicity == 2 & religion == 2 ~ "Black Catholic", | |
race_ethnicity >= 2 & race_ethnicity <= 15 & religion == 2 ~ "Hispanic Catholic", | |
race_ethnicity == 2 & xtn == 1 ~ "Black Protestant")) %>% | |
mutate(coll = case_when(education >=8 ~ 1, education <= 7 ~ 0 )) %>% | |
group_by(grp) %>% | |
mean_ci(coll, wt = weight) %>% | |
na.omit() | |
graph %>% | |
ggplot(., aes(x = reorder(grp, mean), y = mean, fill = grp)) + | |
geom_col(color = 'black') + | |
coord_flip() + | |
y_pct() + | |
error_bar() + | |
theme_rb() + | |
scale_fill_npg() + | |
lab_bar(top = FALSE, type = mean, pos = .02, sz = 6) + | |
labs(x = "", y = "", title = "Share With a College Degree", caption = "@ryanburge\nData: Nationscape 2019-2020") + | |
ggsave("E://coll_degree_black_cath.png", type = "cairo-png") | |
regg <- ns %>% | |
mutate(male = case_when(gender == 2 ~ 1, gender == 1 ~ 0)) %>% | |
mutate(xtn = case_when(religion == 1 | religion == 5 ~ 1, TRUE ~ 0)) %>% | |
mutate(white = case_when(race_ethnicity == 1 & hispanic == 1 ~ 1)) %>% | |
mutate(grp = frcode(white == 1 & religion == 2 ~ "White Catholic", | |
race_ethnicity == 2 & religion == 2 ~ "Black Catholic", | |
race_ethnicity >= 2 & race_ethnicity <= 15 & religion == 2 ~ "Hispanic Catholic", | |
race_ethnicity == 2 & xtn == 1 ~ "Black Protestant")) %>% | |
mutate(app = case_when(pres_approval == 1 | pres_approval == 2 ~ 1, | |
pres_approval == 3 | pres_approval == 4 ~ 0)) %>% | |
select(education, household_income, male, grp, white, app, age) | |
reg <- glm(app ~ education*grp + age + male + household_income, data = regg, family = "binomial") | |
graph <- interact_plot(reg, pred= education, modx = grp, int.width = .76, interval = TRUE) | |
graph + | |
theme_rb() + | |
scale_x_continuous(breaks = c(1,2,3,4,5,6,7,8,9,10,11), labels = c("","8th\nGrade", "", "HS Grad", "", "Some\nCollege", "", "4 Year", "", "Masters", "")) + | |
y_pct() + | |
add_text(x = 9, y = .55, word = "White Catholics", sz = 4) + | |
add_text(x = 9, y = .35, word = "Hispanic Catholics", sz = 4) + | |
add_text(x = 9, y = .27, word = "Black Catholics", sz = 4) + | |
add_text(x = 9, y = .18, word = "Black Protestants", sz = 4) + | |
labs(x = "Education", y = "Estimate of Trump's Approval", title = "Trump's Approval by Level of Education", caption = "@ryanburge\nData: Nationscape 2019-2020") + | |
ggsave("E://black_cath_interact.png", type = "cairo-png", width = 7) | |
yyy1 <- gss %>% | |
filter(year < 2000) %>% | |
filter(catholic == 1) %>% | |
mutate(white = case_when(race == 1 ~ 1, TRUE ~ 0)) %>% | |
group_by(year) %>% | |
mean_ci(white, wt= wtssall) | |
yyy2 <- gss %>% | |
filter(year >= 2000) %>% | |
filter(catholic == 1) %>% | |
mutate(white = case_when(race == 1 & hispanic == 1 ~ 1, TRUE ~ 0)) %>% | |
group_by(year) %>% | |
mean_ci(white, wt= wtssall) | |
graph <- bind_rows(yyy1, yyy2) | |
graph %>% | |
ggplot(., aes(x = year, y = mean)) + | |
geom_point(size=3, color="white") + | |
geom_point(size=2, shape=1) + | |
geom_point(size=1, shape=19) + | |
geom_smooth(color = "darkorchid", linetype = "twodash", se = FALSE) + | |
theme_rb() + | |
y_pct() + | |
scale_x_continuous(breaks = c(1978, 1988, 1998, 2008, 2018)) + | |
labs(x = "", y = "", title = "Share of Catholics Who Are White", caption = "@ryanburge\nData: GSS 1972-2018") + | |
ggsave("E://white_catholics_gss.png", type = 'cairo-png') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment