Christianity Today Goes Viral
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(rtweet) | |
library(socsci) | |
## Scraping and Joining #### | |
rt <- search_tweets( | |
"https://www.christianitytoday.com/ct/2019/december-web-only/trump-should-be-removed-from-office.html", n = 18000, include_rts = TRUE | |
) | |
rt1 <- search_tweets( | |
"https://www.christianitytoday.com/ct/2019/december-web-only/trump-should-be-removed-from-office.html", n = 18000, include_rts = TRUE | |
) | |
rt2 <- search_tweets( | |
"https://www.christianitytoday.com/ct/2019/december-web-only/trump-should-be-removed-from-office.html", n = 18000, include_rts = TRUE | |
) | |
rt3 <- search_tweets( | |
"https://www.christianitytoday.com/ct/2019/december-web-only/trump-should-be-removed-from-office.html", n = 18000, include_rts = TRUE | |
) | |
rt4 <- search_tweets( | |
"https://www.christianitytoday.com/ct/2019/december-web-only/trump-should-be-removed-from-office.html", n = 18000, include_rts = TRUE | |
) | |
rt5 <- search_tweets( | |
"https://www.christianitytoday.com/ct/2019/december-web-only/trump-should-be-removed-from-office.html", n = 18000, include_rts = TRUE | |
) | |
rt6 <- search_tweets( | |
"https://www.christianitytoday.com/ct/2019/december-web-only/trump-should-be-removed-from-office.html", n = 18000, include_rts = TRUE | |
) | |
rt7 <- search_tweets( | |
"https://www.christianitytoday.com/ct/2019/december-web-only/trump-should-be-removed-from-office.html", n = 18000, include_rts = TRUE | |
) | |
all <- bind_rows(rt, rt1, rt2, rt3, rt4, rt5, rt6) | |
all <- all %>% distinct(status_id, .keep_all = TRUE) | |
## Tweet Volume #### | |
all$date <- date(all$created_at) | |
all$date2 <- round_date(all$created_at, "1 mins") | |
graph <- all %>% | |
group_by(date2) %>% | |
count() | |
graph %>% | |
ggplot(., aes(date2, y = n, fill = n)) + | |
scale_fill_gradient(low = "#AAB0B1", high = "#E11A23") + | |
geom_col() + | |
theme_gg("Abel") + | |
labs(x = "Greenwich Mean Time", y = "Tweets per Minute", title = "Volume of Tweets about the CT Editorial", caption = "@ryanburge\nData: Twitter REST API") + | |
ggsave("E://vel_ct.png", type = "cairo-png") | |
## Sentiment Analysis #### | |
reg_words <- "([^A-Za-z_\\d#@']|'(?![A-Za-z_\\d#@]))" | |
tidy_tweets <- all %>% | |
filter(!str_detect(text, "^RT")) %>% | |
mutate(text = str_replace_all(text, "https://t.co/[A-Za-z\\d]+|http://[A-Za-z\\d]+|&|<|>|RT|https", "")) %>% | |
unnest_tokens(word, text) %>% | |
filter(!word %in% stop_words$word, | |
str_detect(word, "[a-z]")) | |
afinn <- get_sentiments("afinn") | |
tidy_tweets <- tidy_tweets %>% | |
inner_join(afinn) | |
fin1 <- tidy_tweets %>% | |
filter(value > 0) %>% | |
group_by(date2) %>% | |
summarise(sum = sum(value)) %>% | |
mutate(type = "Positive") | |
fin2 <- tidy_tweets %>% | |
filter(value < 0) %>% | |
group_by(date2) %>% | |
summarise(sum = sum(value)) %>% | |
mutate(type = "Negative") | |
fin3 <- tidy_tweets %>% | |
group_by(date2) %>% | |
summarise(sum = sum(value)) %>% | |
mutate(type = "Overall") | |
fin <- bind_rows(fin1, fin2, fin3) | |
fin %>% | |
ggplot(., aes(x = date2, y = sum, color = type, group = type)) + | |
geom_point(size=3, color="white") + | |
geom_point(size=2, shape=1) + | |
geom_point(size=1, shape=19) + | |
scale_color_manual(values = c("#D51B1E", "#AAB0B1", "navyblue")) + | |
geom_smooth(se = FALSE, linetype = "twodash") + | |
theme_gg("Abel") + | |
theme(legend.position = "bottom") + | |
labs(x = "Greenwich Mean Time", y = "Overall Sentiment", title = "The Sentiment of Tweets About the CT Editorial", caption = "@ryanburge\nData: Twitter REST API") + | |
ggsave("E://sentiment_CT.png", type = "cairo-png") | |
graph <- tidy_tweets %>% | |
filter(value < 0) %>% | |
ct(word) %>% | |
arrange(-n) %>% | |
top_n(25) | |
graph %>% | |
filter(word != "shit") %>% | |
ggplot(., aes(x = reorder(word, n), y = n, fill = n)) + | |
geom_col(color = "black") + | |
coord_flip() + | |
theme_gg("Abel") + | |
scale_fill_gradient(low = "#AAB0B1", high = "#D51B1E") + | |
labs(x = "", y = "", title = "Most Used Negative Words", caption = "@ryanburge\nData: Twitter REST API") + | |
ggsave("E://neg_words.png", type = "cairo-png") | |
graph <- tidy_tweets %>% | |
filter(value > 0) %>% | |
ct(word) %>% | |
arrange(-n) %>% | |
top_n(25) | |
graph %>% | |
filter(word != "shit") %>% | |
ggplot(., aes(x = reorder(word, n), y = n, fill = n)) + | |
geom_col(color = "black") + | |
coord_flip() + | |
theme_gg("Abel") + | |
scale_fill_gradient(low = "#AAB0B1", high = "navyblue") + | |
labs(x = "", y = "", title = "Most Used Positive Words", caption = "@ryanburge\nData: Twitter REST API") + | |
ggsave("E://pos_words.png", type = "cairo-png") | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment