-
-
Save ryanburge/bea3895ea36ceda154a380301e2114e2 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
graph1 <- gss %>% | |
filter(year != 1982) %>% | |
filter(year != 1987) %>% | |
filter(year <= 2018) %>% | |
mutate(nd = case_when(denom == 70 ~ 1, | |
TRUE ~ 0)) %>% | |
group_by(year) %>% | |
mean_ci(nd, wt = wtssall) %>% | |
mutate(type = "Non-Denom.") | |
graph2 <- gss %>% | |
filter(year == 1982 | year == 1987) %>% | |
mutate(nd = case_when(denom == 70 ~ 1, | |
TRUE ~ 0)) %>% | |
group_by(year) %>% | |
mean_ci(nd, wt = oversamp) %>% | |
mutate(type = "Non-Denom.") | |
graph3 <- gss %>% | |
filter(year == 2021) %>% | |
mutate(nd = case_when(denom == 70 ~ 1, | |
TRUE ~ 0)) %>% | |
group_by(year) %>% | |
mean_ci(nd, wt = wtssnrps) %>% | |
mutate(type = "Non-Denom.") | |
all <- bind_rows(graph1, graph2, graph3) | |
all %>% | |
ggplot(., aes(x = year, y = mean)) + | |
geom_line() + | |
geom_point(stroke = 1, shape = 21, fill = "white") + | |
theme_rb() + | |
scale_y_continuous(labels = percent, limits = c(0, .13)) + | |
geom_smooth(se = FALSE, linetype = "twodash", color = "red", linewidth = 1) + | |
labs(x = "Year", y = "", title = "Share of All Americans Who Identify as Non-Denominational", caption = "@ryanburge\nData: General Social Survey, 1972-2021") | |
save("non_denom_gss.png") | |
graph1 <- gss %>% | |
filter(year != 1982) %>% | |
filter(year != 1987) %>% | |
filter(year <= 2018) %>% | |
filter(relig == 1) %>% | |
mutate(den = frcode(denom == 14 ~ "SBC", | |
denom == 22 ~ "UMC", | |
denom == 70 ~ "ND")) %>% | |
group_by(year) %>% | |
ct(den, wt = wtssall) %>% | |
filter(den != "NA") | |
graph2 <- gss %>% | |
filter(year == 1982 | year == 1987) %>% | |
filter(relig == 1) %>% | |
mutate(den = frcode(denom == 14 ~ "SBC", | |
denom == 22 ~ "UMC", | |
denom == 70 ~ "ND")) %>% | |
group_by(year) %>% | |
ct(den, wt = oversamp) %>% | |
filter(den != "NA") | |
graph3 <- gss %>% | |
filter(year == 2021) %>% | |
filter(relig == 1) %>% | |
mutate(den = frcode(denom == 14 ~ "SBC", | |
denom == 22 ~ "UMC", | |
denom == 70 ~ "ND")) %>% | |
group_by(year) %>% | |
ct(den, wt = wtssnrps) %>% | |
filter(den != "NA") | |
all <- bind_rows(graph1, graph2, graph3) | |
library(ggtext) | |
all %>% | |
filter(year >= 1984) %>% | |
filter(year <= 2018) %>% | |
ggplot(., aes(x = year, y = pct, color = den, group = den)) + | |
# geom_line() + | |
# geom_point(stroke = 1, shape = 21, fill = "white", alpha = 1) + | |
theme_rb() + | |
scale_y_continuous(labels = percent, limits = c(0, .225)) + | |
geom_labelsmooth(aes(label = den), method = "loess", formula = y ~ x, family = "font", linewidth = 1, text_smoothing = 30, size = 6, linewidth = 1, boxlinewidth = 0.3, hjust = .45) + | |
labs( | |
x = "Year", | |
y = "", | |
title = "<span style = 'font-size:14pt'>Share of Protestants Who are </span><span style = 'color:#0099B4FF; font-size:18pt'>Southern Baptists,</span><span style = 'color:#AD002AFF; font-size:18pt'>United Methodists,</span>or <span style = 'color:#42B540FF; font-size:18pt'>Non-Denominational</span>", | |
caption = "@ryanburge\nData: General Social Survey, 1984-2018") + | |
theme_rb() + | |
scale_color_manual(values = c("#0099B4FF", "#AD002AFF", "#42B540FF")) + | |
theme( | |
text = element_text(family = "font"), | |
# plot.title.position = "plot", | |
plot.title = element_markdown(size = 14, lineheight = 1.2)) | |
# labs(x = "Year", y = "", title = "Share of Protestants Who are Southern Baptist, United Methodist, or Non-Denominational", caption = "@ryanburge\nData: General Social Survey, 1984-2018") | |
save("non_denom_gss_prot_comp.png") | |
library(readxl) | |
library(janitor) | |
cen20 <- read_excel("E:/data/rel_cen20.xlsx") | |
cen20 <- cen20 %>% | |
clean_names() | |
cen20 <- cen20 %>% | |
arrange(-adherents) %>% | |
filter(group_name != "NA") %>% | |
head(20) | |
cen20$labs <- formatC(cen20$adherents, format = "d", big.mark = ",") | |
cen20 %>% | |
ggplot(., aes(x = reorder(group_name, adherents), y = adherents, fill = group_name)) + | |
geom_col(color = "black") + | |
coord_flip() + | |
geom_text(aes(y = adherents + 6100000, label = labs), position = position_dodge(width = .9), size = 5, family = "font") + | |
theme_rb() + | |
scale_fill_manual(values=met.brewer("Hiroshige", 20)) + | |
scale_y_continuous(labels = unit_format(unit = "M", scale = 1e-6), limits = c(0, 71000000)) + | |
labs(x = "", y = "", title = "The 20 Largest Religious Traditions in the United States", caption = "@ryanburge\nData: 2020 Religion Census") | |
save("rel_cen_20_largest.png") | |
cen20 <- read_excel("E:/data/rel_cen20.xlsx", sheet = 3) | |
cen20 <- cen20 %>% | |
clean_names() | |
nd <- cen20 %>% | |
filter(group_code == "500") %>% | |
mutate(fips = as.numeric(fips)) | |
nd <- nd %>% | |
mutate(bins = adherents_as_percent_of_total_adherents) %>% | |
mutate(bins = frcode(bins >= .20 ~ "20%+", | |
bins >= .15 & bins <= .199 ~ "15%-20%", | |
bins >= .10 & bins <= .1499 ~ "10%-15%", | |
bins >= .05 & bins <= .0999 ~ "5%-10%", | |
bins <= .0499 ~ "<5%")) %>% | |
filter(bins != "NA") | |
library(urbnmapr) | |
library(urbnthemes) | |
territories_counties <- get_urbn_map(map = "territories_counties") | |
territories_counties <- territories_counties %>% | |
mutate(fips = as.numeric(county_fips)) | |
joined <- left_join(territories_counties, nd) | |
library(paletteer) | |
paletteer_d("ggsci::lanonc_lancet") | |
joined %>% | |
filter(bins != 'NA') %>% | |
ggplot(aes(long, lat, group = group, fill = bins)) + | |
geom_polygon(color = "black", linewidth = 0.05) + | |
coord_map(projection = "albers", lat0 = 39, lat1 = 45) + | |
labs(title = " Percent of All Adherents Who Are Non-Denominational", caption = "@ryanburge\nData: 2020 Religious Census", fill = "") + | |
theme(legend.title = element_text(), legend.key.width = unit(.5, "in")) + | |
urbnthemes::theme_urbn_map() + | |
scale_fill_paletteer_d("PNWColors::Sunset2") + | |
theme(plot.title = element_text(size=20, family= "font", face= "bold")) + | |
theme(plot.caption = element_text(size = 14, family="font")) + | |
theme(text=element_text(size=18, family="font")) | |
save("relcen2020_map_nd_new.png") | |
all <- read_csv("E://data/county_pop22.csv") | |
age <- all %>% | |
filter(year == 4) %>% | |
mutate(fips = paste0(state, county)) %>% | |
select(fips, median_age_tot, pop = popestimate, stname) | |
library(readxl) | |
library(janitor) | |
cen <- read_excel("E://data/rel_cen20.xlsx", sheet = 3) %>% | |
clean_names() | |
rel <- cen %>% | |
filter(group_code == "500") %>% | |
select(fips, pct = adherents_as_percent_of_total_adherents) | |
graph <- left_join(rel, age) | |
fips <- data.frame( | |
stringsAsFactors = FALSE, | |
stname = c("Alabama","Alaska","Arizona", | |
"Arkansas","California","Colorado","Connecticut", | |
"Delaware","Florida","Georgia","Hawaii","Idaho", | |
"Illinois","Indiana","Iowa","Kansas","Kentucky","Louisiana", | |
"Maine","Maryland","Massachusetts","Michigan", | |
"Minnesota","Mississippi","Missouri","Montana","Nebraska", | |
"Nevada","New Hampshire","New Jersey","New Mexico", | |
"New York","North Carolina","North Dakota","Ohio", | |
"Oklahoma","Oregon","Pennsylvania","Rhode Island", | |
"South Carolina","South Dakota","Tennessee","Texas","Utah", | |
"Vermont","Virginia","Washington","West Virginia", | |
"Wisconsin","Wyoming","American Samoa","Guam", | |
"Northern Mariana Islands","Puerto Rico","Virgin Islands"), | |
Postal.Code = c("AL","AK","AZ","AR","CA", | |
"CO","CT","DE","FL","GA","HI","ID","IL","IN","IA", | |
"KS","KY","LA","ME","MD","MA","MI","MN","MS", | |
"MO","MT","NE","NV","NH","NJ","NM","NY","NC","ND", | |
"OH","OK","OR","PA","RI","SC","SD","TN","TX", | |
"UT","VT","VA","WA","WV","WI","WY","AS","GU","MP", | |
"PR","VI"), | |
FIPS = c("01","02","04","05","06", | |
"08","09","10","12","13","15","16","17","18","19", | |
"20","21","22","23","24","25","26","27","28", | |
"29","30","31","32","33","34","35","36","37","38", | |
"39","40","41","42","44","45","46","47","48", | |
"49","50","51","53","54","55","56","60","66","69", | |
"72","78") | |
) | |
graph1 <- left_join(graph, fips) %>% | |
mutate(FIPS = as.numeric(FIPS)) | |
cc <- cces20 %>% | |
select(FIPS = inputstate, region) %>% | |
mutate(region = frcode(region == 1 ~ "Northeast", | |
region == 2 ~ "Midwest", | |
region == 3 ~ "South", | |
region == 4 ~ "West")) %>% | |
distinct() %>% | |
mutate(FIPS = as.numeric(FIPS)) %>% | |
as_tibble() | |
graph2 <- left_join(graph1, cc) %>% filter(region != "NA") | |
graph2 %>% | |
ggplot(., aes(x = median_age_tot, y = pct)) + | |
geom_point(data = graph2, aes(size = pop, color = region), stroke = .5, shape = 21) + | |
geom_smooth(se = FALSE, method = lm, color = "black", linetype = "twodash", linewidth = .5) + | |
guides(size = FALSE) + | |
y_pct() + | |
theme_rb() + | |
scale_color_tableau() + | |
theme(legend.position = c(.85, .55)) + | |
labs(x = "Median Age", y = "Share of All Adherents Who Are Non-Denominational", title = "Are Non-Denominationals More Prominent in Younger Counties?", caption = "@ryanburge\nData: Religion Census 2020 + US Census Data") | |
save("med_age_scatter_nd.png") | |
cen20 <- read_excel("E:/data/rel_cen20.xlsx", sheet = 2) | |
cen20 <- cen20 %>% | |
clean_names() | |
state <- cen20 %>% | |
group_by(state_name) %>% | |
slice_max(order_by = adherents, n = 1) %>% | |
select(state_name, group_name) | |
library(fiftystater) | |
data("fifty_states") | |
state$id <- tolower(state$state_name) | |
mapp <- left_join(fifty_states, state, by = c("id")) %>% as_tibble() | |
mapp <- mapp %>% | |
mutate(group_name = str_replace(group_name, "Church of Jesus Christ of Latter-day Saints", "LDS")) %>% | |
mutate(group_name = str_replace(group_name, "Non-denominational Christian Churches", "Non-Denominational")) | |
mapp %>% | |
ggplot(., aes(map_id = id)) + | |
geom_map(aes(fill = group_name), map = fifty_states, color = "black") + | |
expand_limits(x = fifty_states$long, y = fifty_states$lat) + | |
coord_map() + | |
scale_x_continuous(breaks = NULL) + | |
scale_y_continuous(breaks = NULL) + | |
labs(x = "", y = "") + | |
fifty_states_inset_boxes() + | |
scale_fill_manual(values = c("Catholic Church" = "#00468BFF", | |
"LDS" = "#ED0000FF", | |
"Non-Denominational" = "#42B540FF", | |
"Southern Baptist Convention" = "#0099B4FF")) + | |
theme_rb(legend = TRUE) + | |
theme(legend.position = "bottom", | |
legend.text = element_text(size = 16), | |
panel.background = element_blank()) + | |
labs(title = "The Denomination with the Most Adherents in Each State", caption = "@ryanburge\nData: Religion Census 2020") | |
save("fifty_state_maps_denom2020.png") | |
top <- cen20 %>% | |
group_by(state_name) %>% | |
top_n(adherents, n = 2) %>% | |
ungroup(state_name) | |
graph <- top %>% | |
group_by(state_name) %>% | |
top_n(-1) %>% | |
select(state_name, group_name) | |
graph$id <- tolower(graph$state_name) | |
library(fiftystater) | |
data("fifty_states") | |
mapp <- left_join(fifty_states, graph, by = c("id")) %>% as_tibble() %>% filter(group_name != "NA") | |
mapp <- mapp %>% | |
mutate(group_name = str_replace(group_name, "Church of Jesus Christ of Latter-day Saints", "LDS")) %>% | |
mutate(group_name = str_replace(group_name, "Non-denominational Christian Churches", "Non-Denominational")) %>% | |
mutate(group_name = str_replace(group_name, "Evangelical Lutheran Church in America", "ELCA")) %>% | |
mutate(group_name = str_replace(group_name, "Lutheran Church--Missouri Synod", "Lutheran - MO Synod")) | |
mapp %>% | |
ggplot(., aes(map_id = id)) + | |
geom_map(aes(fill = group_name), map = fifty_states, color = "black") + | |
expand_limits(x = fifty_states$long, y = fifty_states$lat) + | |
coord_map() + | |
scale_x_continuous(breaks = NULL) + | |
scale_y_continuous(breaks = NULL) + | |
labs(x = "", y = "") + | |
theme(legend.position = "bottom", | |
panel.background = element_blank()) + | |
fifty_states_inset_boxes() + | |
theme_rb(legend = TRUE) + | |
theme(legend.text = element_text(size = 10)) + | |
scale_fill_manual(values = c("Catholic Church" = "#00468BFF", | |
"LDS" = "#ED0000FF", | |
"Non-Denominational" = "#42B540FF", | |
"Southern Baptist Convention" = "#0099B4FF", | |
"Muslim Estimate" = "#925E9FFF", | |
"ELCA" = "#FDAF91FF", | |
"United Methodist Church" = "#AD002AFF", | |
"Lutheran - MO Synod" = "#ADB6B6FF")) + | |
labs(title = "Religious Group with the Second Most Adherents by State", caption = "@ryanburge\nData: Religion Census, 2020") | |
save("second_most_pop2020.png") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment