Skip to content

Instantly share code, notes, and snippets.

@rygorous
Last active June 7, 2024 08:21
Show Gist options
  • Save rygorous/2156668 to your computer and use it in GitHub Desktop.
Save rygorous/2156668 to your computer and use it in GitHub Desktop.
float->half variants
// float->half variants.
// by Fabian "ryg" Giesen.
//
// I hereby place this code in the public domain, as per the terms of the
// CC0 license:
//
// https://creativecommons.org/publicdomain/zero/1.0/
//
// float_to_half_full: This is basically the ISPC stdlib code, except
// I preserve the sign of NaNs (any good reason not to?)
//
// float_to_half_fast: Almost the same, with some unnecessary cases cut.
//
// float_to_half_fast2: This is where it gets a bit weird. See lengthy
// commentary inside the function code. I'm a bit on the fence about two
// things:
// 1. This *will* behave differently based on whether flush-to-zero is
// enabled or not. Is this acceptable for ISPC?
// 2. I'm a bit on the fence about NaNs. For half->float, I opted to extend
// the mantissa (preserving both qNaN and sNaN contents) instead of always
// returning a qNaN like the original ISPC stdlib code did. For float->half
// the "natural" thing would be just taking the top mantissa bits, except
// that doesn't work; if they're all zero, we might turn a sNaN into an
// Infinity (seriously bad!). I could test for this case and do a sticky
// bit-like mechanism, but that's pretty ugly. Instead I go with ISPC
// std lib behavior in this case and just return a qNaN - not quite symmetric
// but at least it's always safe. Any opinions?
//
// I'll just go ahead and give "fast2" the same treatment as my half->float code,
// but if there's concerns with the way it works I might revise it later, so watch
// this spot.
//
// float_to_half_fast3: Bitfields removed. Ready for SSE2-ification :)
//
// float_to_half_SSE2: Exactly what it says on the tin. Beware, this works slightly
// differently from float_to_half_fast3 - the clamp and bias steps in the "normal" path
// are interchanged, since I get "minps" on every SSE2 target, but "pminsd" only for
// SSE4.1 targets. This code does what it should and is remarkably short, but the way
// it ended up working is "nonobvious" to phrase it politely.
//
// approx_float_to_half: Simpler (but less accurate) version that matches the Fox
// toolkit float->half conversions: http://blog.fox-toolkit.org/?p=40 - note that this
// also (incorrectly) translates some sNaNs into infinity, so be careful!
//
// approx_float_to_half_SSE2: SSE2 version of above.
//
// ----
//
// UPDATE 2016-01-25: Now also with a variant that implements proper round-to-nearest-even.
// It's a bit more expensive and has seen less tweaking than the other variants. On the
// plus side, it doesn't produce subnormal FP32 values as part of generating subnormal
// FP16 values, so the performance is a lot more consistent.
//
// float_to_half_rtne_full: Unoptimized round-to-nearest-break-ties-to-even reference
// implementation.
//
// float_to_half_fast3_rtne: Variant of float_to_half_fast3 that performs round-to-
// nearest-even.
//
// float_to_half_rtne_SSE2: SSE2 implementation of float_to_half_fast3_rtne.
//
// All three functions have been exhaustively tested to produce the same results on
// all 32-bit floating-point numbers with SSE arithmetic in round-to-nearest-even mode.
// No guarantees for what happens with other rounding modes! (See testbed code.)
//
// ----
//
// Oh, and enumerating+testing all 32-bit floats takes some time, especially since
// we will snap a significant fraction of the overall FP32 range to denormals, not
// exactly a fast operation. There's a reason this one prints regular progress
// reports. You've been warned.
#include <stdio.h>
#include <stdlib.h>
#include <emmintrin.h>
typedef unsigned int uint;
union FP32
{
uint u;
float f;
struct
{
uint Mantissa : 23;
uint Exponent : 8;
uint Sign : 1;
};
};
union FP16
{
unsigned short u;
struct
{
uint Mantissa : 10;
uint Exponent : 5;
uint Sign : 1;
};
};
// Original ISPC reference version; this always rounds ties up.
static FP16 float_to_half_full(FP32 f)
{
FP16 o = { 0 };
// Based on ISPC reference code (with minor modifications)
if (f.Exponent == 0) // Signed zero/denormal (which will underflow)
o.Exponent = 0;
else if (f.Exponent == 255) // Inf or NaN (all exponent bits set)
{
o.Exponent = 31;
o.Mantissa = f.Mantissa ? 0x200 : 0; // NaN->qNaN and Inf->Inf
}
else // Normalized number
{
// Exponent unbias the single, then bias the halfp
int newexp = f.Exponent - 127 + 15;
if (newexp >= 31) // Overflow, return signed infinity
o.Exponent = 31;
else if (newexp <= 0) // Underflow
{
if ((14 - newexp) <= 24) // Mantissa might be non-zero
{
uint mant = f.Mantissa | 0x800000; // Hidden 1 bit
o.Mantissa = mant >> (14 - newexp);
if ((mant >> (13 - newexp)) & 1) // Check for rounding
o.u++; // Round, might overflow into exp bit, but this is OK
}
}
else
{
o.Exponent = newexp;
o.Mantissa = f.Mantissa >> 13;
if (f.Mantissa & 0x1000) // Check for rounding
o.u++; // Round, might overflow to inf, this is OK
}
}
o.Sign = f.Sign;
return o;
}
// Same as above, but with full round-to-nearest-even.
static FP16 float_to_half_full_rtne(FP32 f)
{
FP16 o = { 0 };
// Based on ISPC reference code (with minor modifications)
if (f.Exponent == 0) // Signed zero/denormal (which will underflow)
o.Exponent = 0;
else if (f.Exponent == 255) // Inf or NaN (all exponent bits set)
{
o.Exponent = 31;
o.Mantissa = f.Mantissa ? 0x200 : 0; // NaN->qNaN and Inf->Inf
}
else // Normalized number
{
// Exponent unbias the single, then bias the halfp
int newexp = f.Exponent - 127 + 15;
if (newexp >= 31) // Overflow, return signed infinity
o.Exponent = 31;
else if (newexp <= 0) // Underflow
{
if ((14 - newexp) <= 24) // Mantissa might be non-zero
{
uint mant = f.Mantissa | 0x800000; // Hidden 1 bit
uint shift = 14 - newexp;
o.Mantissa = mant >> shift;
uint lowmant = mant & ((1 << shift) - 1);
uint halfway = 1 << (shift - 1);
if (lowmant >= halfway) // Check for rounding
{
if (lowmant > halfway || (o.Mantissa & 1)) // if above halfway point or unrounded result is odd
o.u++; // Round, might overflow into exp bit, but this is OK
}
}
}
else
{
o.Exponent = newexp;
o.Mantissa = f.Mantissa >> 13;
if (f.Mantissa & 0x1000) // Check for rounding
{
if (((f.Mantissa & 0x1fff) > 0x1000) || (o.Mantissa & 1)) // if above halfway point or unrounded result is odd
o.u++; // Round, might overflow to inf, this is OK
}
}
}
o.Sign = f.Sign;
return o;
}
static FP16 float_to_half_fast(FP32 f)
{
FP16 o = { 0 };
// Based on ISPC reference code (with minor modifications)
if (f.Exponent == 255) // Inf or NaN (all exponent bits set)
{
o.Exponent = 31;
o.Mantissa = f.Mantissa ? 0x200 : 0; // NaN->qNaN and Inf->Inf
}
else // Normalized number
{
// Exponent unbias the single, then bias the halfp
int newexp = f.Exponent - 127 + 15;
if (newexp >= 31) // Overflow, return signed infinity
o.Exponent = 31;
else if (newexp <= 0) // Underflow
{
if ((14 - newexp) <= 24) // Mantissa might be non-zero
{
uint mant = f.Mantissa | 0x800000; // Hidden 1 bit
o.Mantissa = mant >> (14 - newexp);
if ((mant >> (13 - newexp)) & 1) // Check for rounding
o.u++; // Round, might overflow into exp bit, but this is OK
}
}
else
{
o.Exponent = newexp;
o.Mantissa = f.Mantissa >> 13;
if (f.Mantissa & 0x1000) // Check for rounding
o.u++; // Round, might overflow to inf, this is OK
}
}
o.Sign = f.Sign;
return o;
}
static FP16 float_to_half_fast2(FP32 f)
{
FP32 infty = { 31 << 23 };
FP32 magic = { 15 << 23 };
FP16 o = { 0 };
uint sign = f.Sign;
f.Sign = 0;
// Based on ISPC reference code (with minor modifications)
if (f.Exponent == 255) // Inf or NaN (all exponent bits set)
{
o.Exponent = 31;
o.Mantissa = f.Mantissa ? 0x200 : 0; // NaN->qNaN and Inf->Inf
}
else // (De)normalized number or zero
{
f.u &= ~0xfff; // Make sure we don't get sticky bits
// Not necessarily the best move in terms of accuracy, but matches behavior
// of other versions.
// Shift exponent down, denormalize if necessary.
// NOTE This represents half-float denormals using single precision denormals.
// The main reason to do this is that there's no shift with per-lane variable
// shifts in SSE*, which we'd otherwise need. It has some funky side effects
// though:
// - This conversion will actually respect the FTZ (Flush To Zero) flag in
// MXCSR - if it's set, no half-float denormals will be generated. I'm
// honestly not sure whether this is good or bad. It's definitely interesting.
// - If the underlying HW doesn't support denormals (not an issue with Intel
// CPUs, but might be a problem on GPUs or PS3 SPUs), you will always get
// flush-to-zero behavior. This is bad, unless you're on a CPU where you don't
// care.
// - Denormals tend to be slow. FP32 denormals are rare in practice outside of things
// like recursive filters in DSP - not a typical half-float application. Whether
// FP16 denormals are rare in practice, I don't know. Whatever slow path your HW
// may or may not have for denormals, this may well hit it.
f.f *= magic.f;
f.u += 0x1000; // Rounding bias
if (f.u > infty.u) f.u = infty.u; // Clamp to signed infinity if overflowed
o.u = f.u >> 13; // Take the bits!
}
o.Sign = sign;
return o;
}
static FP16 float_to_half_fast3(FP32 f)
{
FP32 f32infty = { 255 << 23 };
FP32 f16infty = { 31 << 23 };
FP32 magic = { 15 << 23 };
uint sign_mask = 0x80000000u;
uint round_mask = ~0xfffu;
FP16 o = { 0 };
uint sign = f.u & sign_mask;
f.u ^= sign;
// NOTE all the integer compares in this function can be safely
// compiled into signed compares since all operands are below
// 0x80000000. Important if you want fast straight SSE2 code
// (since there's no unsigned PCMPGTD).
if (f.u >= f32infty.u) // Inf or NaN (all exponent bits set)
o.u = (f.u > f32infty.u) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf
else // (De)normalized number or zero
{
f.u &= round_mask;
f.f *= magic.f;
f.u -= round_mask;
if (f.u > f16infty.u) f.u = f16infty.u; // Clamp to signed infinity if overflowed
o.u = f.u >> 13; // Take the bits!
}
o.u |= sign >> 16;
return o;
}
// Same, but rounding ties to nearest even instead of towards +inf
static FP16 float_to_half_fast3_rtne(FP32 f)
{
FP32 f32infty = { 255 << 23 };
FP32 f16max = { (127 + 16) << 23 };
FP32 denorm_magic = { ((127 - 15) + (23 - 10) + 1) << 23 };
uint sign_mask = 0x80000000u;
FP16 o = { 0 };
uint sign = f.u & sign_mask;
f.u ^= sign;
// NOTE all the integer compares in this function can be safely
// compiled into signed compares since all operands are below
// 0x80000000. Important if you want fast straight SSE2 code
// (since there's no unsigned PCMPGTD).
if (f.u >= f16max.u) // result is Inf or NaN (all exponent bits set)
o.u = (f.u > f32infty.u) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf
else // (De)normalized number or zero
{
if (f.u < (113 << 23)) // resulting FP16 is subnormal or zero
{
// use a magic value to align our 10 mantissa bits at the bottom of
// the float. as long as FP addition is round-to-nearest-even this
// just works.
f.f += denorm_magic.f;
// and one integer subtract of the bias later, we have our final float!
o.u = f.u - denorm_magic.u;
}
else
{
uint mant_odd = (f.u >> 13) & 1; // resulting mantissa is odd
// update exponent, rounding bias part 1
f.u += ((15 - 127) << 23) + 0xfff;
// rounding bias part 2
f.u += mant_odd;
// take the bits!
o.u = f.u >> 13;
}
}
o.u |= sign >> 16;
return o;
}
// Approximate solution. This is faster but converts some sNaNs to
// infinity and doesn't round correctly. Handle with care.
static FP16 approx_float_to_half(FP32 f)
{
FP32 f32infty = { 255 << 23 };
FP32 f16max = { (127 + 16) << 23 };
FP32 magic = { 15 << 23 };
FP32 expinf = { (255 ^ 31) << 23 };
uint sign_mask = 0x80000000u;
FP16 o = { 0 };
uint sign = f.u & sign_mask;
f.u ^= sign;
if (!(f.f < f32infty.u)) // Inf or NaN
o.u = f.u ^ expinf.u;
else
{
if (f.f > f16max.f) f.f = f16max.f;
f.f *= magic.f;
}
o.u = f.u >> 13; // Take the mantissa bits
o.u |= sign >> 16;
return o;
}
// round-half-up (same as ISPC)
static __m128i float_to_half_SSE2(__m128 f)
{
#define CONSTF(name) _mm_castsi128_ps(name)
__m128i mask_sign = _mm_set1_epi32(0x80000000u);
__m128i mask_round = _mm_set1_epi32(~0xfffu);
__m128i c_f32infty = _mm_set1_epi32(255 << 23);
__m128i c_magic = _mm_set1_epi32(15 << 23);
__m128i c_nanbit = _mm_set1_epi32(0x200);
__m128i c_infty_as_fp16 = _mm_set1_epi32(0x7c00);
__m128i c_clamp = _mm_set1_epi32((31 << 23) - 0x1000);
__m128 msign = CONSTF(mask_sign);
__m128 justsign = _mm_and_ps(msign, f);
__m128i f32infty = c_f32infty;
__m128 absf = _mm_xor_ps(f, justsign);
__m128 mround = CONSTF(mask_round);
__m128i absf_int = _mm_castps_si128(absf); // pseudo-op, but val needs to be copied once so count as mov
__m128i b_isnan = _mm_cmpgt_epi32(absf_int, f32infty);
__m128i b_isnormal = _mm_cmpgt_epi32(f32infty, _mm_castps_si128(absf));
__m128i nanbit = _mm_and_si128(b_isnan, c_nanbit);
__m128i inf_or_nan = _mm_or_si128(nanbit, c_infty_as_fp16);
__m128 fnosticky = _mm_and_ps(absf, mround);
__m128 scaled = _mm_mul_ps(fnosticky, CONSTF(c_magic));
__m128 clamped = _mm_min_ps(scaled, CONSTF(c_clamp)); // logically, we want PMINSD on "biased", but this should gen better code
__m128i biased = _mm_sub_epi32(_mm_castps_si128(clamped), _mm_castps_si128(mround));
__m128i shifted = _mm_srli_epi32(biased, 13);
__m128i normal = _mm_and_si128(shifted, b_isnormal);
__m128i not_normal = _mm_andnot_si128(b_isnormal, inf_or_nan);
__m128i joined = _mm_or_si128(normal, not_normal);
__m128i sign_shift = _mm_srli_epi32(_mm_castps_si128(justsign), 16);
__m128i final = _mm_or_si128(joined, sign_shift);
// ~20 SSE2 ops
return final;
#undef CONSTF
}
// round-to-nearest-even
// this is an adaptation of float_to_half_fast3_rtne which is the code
// you should read to understand the algorithm.
static __m128i float_to_half_rtne_SSE2(__m128 f)
{
#define CONSTF(name) _mm_castsi128_ps(name)
__m128i mask_sign = _mm_set1_epi32(0x80000000u);
__m128i c_f16max = _mm_set1_epi32((127 + 16) << 23); // all FP32 values >=this round to +inf
__m128i c_nanbit = _mm_set1_epi32(0x200);
__m128i c_infty_as_fp16 = _mm_set1_epi32(0x7c00);
__m128i c_min_normal = _mm_set1_epi32((127 - 14) << 23); // smallest FP32 that yields a normalized FP16
__m128i c_subnorm_magic = _mm_set1_epi32(((127 - 15) + (23 - 10) + 1) << 23);
__m128i c_normal_bias = _mm_set1_epi32(0xfff - ((127 - 15) << 23)); // adjust exponent and add mantissa rounding
__m128 msign = CONSTF(mask_sign);
__m128 justsign = _mm_and_ps(msign, f);
__m128 absf = _mm_xor_ps(f, justsign);
__m128i absf_int = _mm_castps_si128(absf); // the cast is "free" (extra bypass latency, but no thruput hit)
__m128i f16max = c_f16max;
__m128 b_isnan = _mm_cmpunord_ps(absf, absf); // is this a NaN?
__m128i b_isregular = _mm_cmpgt_epi32(f16max, absf_int); // (sub)normalized or special?
__m128i nanbit = _mm_and_si128(_mm_castps_si128(b_isnan), c_nanbit);
__m128i inf_or_nan = _mm_or_si128(nanbit, c_infty_as_fp16); // output for specials
__m128i min_normal = c_min_normal;
__m128i b_issub = _mm_cmpgt_epi32(min_normal, absf_int);
// "result is subnormal" path
__m128 subnorm1 = _mm_add_ps(absf, CONSTF(c_subnorm_magic)); // magic value to round output mantissa
__m128i subnorm2 = _mm_sub_epi32(_mm_castps_si128(subnorm1), c_subnorm_magic); // subtract out bias
// "result is normal" path
__m128i mantoddbit = _mm_slli_epi32(absf_int, 31 - 13); // shift bit 13 (mantissa LSB) to sign
__m128i mantodd = _mm_srai_epi32(mantoddbit, 31); // -1 if FP16 mantissa odd, else 0
__m128i round1 = _mm_add_epi32(absf_int, c_normal_bias);
__m128i round2 = _mm_sub_epi32(round1, mantodd); // if mantissa LSB odd, bias towards rounding up (RTNE)
__m128i normal = _mm_srli_epi32(round2, 13); // rounded result
// combine the two non-specials
__m128i nonspecial = _mm_or_si128(_mm_and_si128(subnorm2, b_issub), _mm_andnot_si128(b_issub, normal));
// merge in specials as well
__m128i joined = _mm_or_si128(_mm_and_si128(nonspecial, b_isregular), _mm_andnot_si128(b_isregular, inf_or_nan));
__m128i sign_shift = _mm_srli_epi32(_mm_castps_si128(justsign), 16);
__m128i final = _mm_or_si128(joined, sign_shift);
// ~28 SSE2 ops
return final;
#undef CONSTF
}
static __m128i approx_float_to_half_SSE2(__m128 f)
{
#define CONSTF(name) _mm_castsi128_ps(name)
__m128i mask_fabs = _mm_set1_epi32(0x7fffffff);
__m128i c_f32infty = _mm_set1_epi32((255 << 23));
__m128i c_expinf = _mm_set1_epi32((255 ^ 31) << 23);
__m128i c_f16max = _mm_set1_epi32((127 + 16) << 23);
__m128i c_magic = _mm_set1_epi32(15 << 23);
__m128 mabs = CONSTF(mask_fabs);
__m128 fabs = _mm_and_ps(mabs, f);
__m128 justsign = _mm_xor_ps(f, fabs);
__m128 f16max = CONSTF(c_f16max);
__m128 expinf = CONSTF(c_expinf);
__m128 infnancase = _mm_xor_ps(expinf, fabs);
__m128 clamped = _mm_min_ps(f16max, fabs);
__m128 b_notnormal = _mm_cmpnlt_ps(fabs, CONSTF(c_f32infty));
__m128 scaled = _mm_mul_ps(clamped, CONSTF(c_magic));
__m128 merge1 = _mm_and_ps(infnancase, b_notnormal);
__m128 merge2 = _mm_andnot_ps(b_notnormal, scaled);
__m128 merged = _mm_or_ps(merge1, merge2);
__m128i shifted = _mm_srli_epi32(_mm_castps_si128(merged), 13);
__m128i signshifted = _mm_srli_epi32(_mm_castps_si128(justsign), 16);
__m128i final = _mm_or_si128(shifted, signshifted);
// ~15 SSE2 ops
return final;
#undef CONSTF
}
// from fox toolkit float->half code (which "approx" variants match)
static uint basetable[512];
static unsigned char shifttable[512];
static void generatetables(){
unsigned int i;
int e;
for(i=0; i<256; ++i){
e=i-127;
if(e<-24){ // Very small numbers map to zero
basetable[i|0x000]=0x0000;
basetable[i|0x100]=0x8000;
shifttable[i|0x000]=24;
shifttable[i|0x100]=24;
}
else if(e<-14){ // Small numbers map to denorms
basetable[i|0x000]=(0x0400>>(-e-14));
basetable[i|0x100]=(0x0400>>(-e-14)) | 0x8000;
shifttable[i|0x000]=-e-1;
shifttable[i|0x100]=-e-1;
}
else if(e<=15){ // Normal numbers just lose precision
basetable[i|0x000]=((e+15)<<10);
basetable[i|0x100]=((e+15)<<10) | 0x8000;
shifttable[i|0x000]=13;
shifttable[i|0x100]=13;
}
else if(e<128){ // Large numbers map to Infinity
basetable[i|0x000]=0x7C00;
basetable[i|0x100]=0xFC00;
shifttable[i|0x000]=24;
shifttable[i|0x100]=24;
}
else{ // Infinity and NaN's stay Infinity and NaN's
basetable[i|0x000]=0x7C00;
basetable[i|0x100]=0xFC00;
shifttable[i|0x000]=13;
shifttable[i|0x100]=13;
}
}
}
// also from fox toolkit
static uint float_to_half_foxtk(uint f)
{
return basetable[(f>>23)&0x1ff]+((f&0x007fffff)>>shifttable[(f>>23)&0x1ff]);
}
// from half->float code - just for verification.
static FP32 half_to_float(FP16 h)
{
static const FP32 magic = { 113 << 23 };
static const uint shifted_exp = 0x7c00 << 13; // exponent mask after shift
FP32 o;
o.u = (h.u & 0x7fff) << 13; // exponent/mantissa bits
uint exp = shifted_exp & o.u; // just the exponent
o.u += (127 - 15) << 23; // exponent adjust
// handle exponent special cases
if (exp == shifted_exp) // Inf/NaN?
o.u += (128 - 16) << 23; // extra exp adjust
else if (exp == 0) // Zero/Denormal?
{
o.u += 1 << 23; // extra exp adjust
o.f -= magic.f; // renormalize
}
o.u |= (h.u & 0x8000) << 16; // sign bit
return o;
}
static FP32 half_to_float_lit(unsigned short u)
{
FP16 fp16 = { u };
return half_to_float(fp16);
}
int main(int argc, char **argv)
{
FP32 f;
FP16 full, fast, fast2, fast3;
uint u;
generatetables();
#if 0 // commented out since one full pass is slow enough...
u = 0;
//u = 0x32000000;
//u = 0x32fff800;
//u = 0x33000000;
do
{
f.u = u;
full = float_to_half_full(f);
fast = float_to_half_fast(f);
fast2 = float_to_half_fast2(f);
fast3 = float_to_half_fast3(f);
if (full.u != fast.u || full.u != fast2.u || full.u != fast3.u)
{
FP32 fastback, fast2back, fast3back;
fastback = half_to_float(fast);
fast2back = half_to_float(fast2);
fast3back = half_to_float(fast3);
printf("mismatch! val=%08x full=%04x fast=%04x->%08x fast2=%04x->%08x fast3=%04x->%08x\n", u, full.u,
fast.u, fastback.u, fast2.u, fast2back.u, fast3.u, fast3back.u);
return 1;
}
++u;
if ((u & 0xffffff) == 0)
printf(" %02x\n", (u-1) >> 24);
}
while (u);
#endif
#if 0
printf("ISPC vs. round-to-nearest-even:\n");
int num_expected_mismatch = 0;
u = 0;
do
{
f.u = u;
full = float_to_half_full(f);
FP16 rtne = float_to_half_full_rtne(f);
if (full.u != rtne.u)
{
// Some mismatches expected, but make sure this is one of them!
FP32 f_full = half_to_float(full);
FP32 f_rtne = half_to_float(rtne);
// Expected cases: f_full and f_rtne are equidistant from true value (in ulps), full is odd and rtne is even.
// (Unless we rounded to +-0.)
int diff_full = abs((int) (f_full.u - u));
int diff_rtne = abs((int) (f_rtne.u - u));
if ((diff_full == diff_rtne || (diff_full == 0x800000 && (rtne.u & 0x7fff) == 0)) && ((full.u & 1) == 1) && ((rtne.u & 1) == 0))
++num_expected_mismatch;
else
{
printf("unexpected mismatch! val=%08x mant=%06x full=%04x rtne=%04x diff_full=%x diff_rtne=%x\n", u, f.Mantissa, full.u, rtne.u, diff_full, diff_rtne);
return 1;
}
}
++u;
if ((u & 0xffffff) == 0)
printf(" %02x\n", (u-1) >> 24);
} while (u);
printf("%d expected mismatches\n", num_expected_mismatch);
#endif
#if 0 // RTNE vs. ref
u = 0;
do
{
f.u = u;
full = float_to_half_full_rtne(f);
fast3 = float_to_half_fast3_rtne(f);
if (full.u != fast3.u)
{
FP32 fast3back = half_to_float(fast3);
printf("mismatch! val=%08x full=%04x fast3=%04x->%08x\n", u, full.u, fast3.u, fast3back.u);
return 1;
}
++u;
if ((u & 0xffffff) == 0)
printf(" %02x\n", (u-1) >> 24);
}
while (u);
#endif
#if 0
printf("SSE2:\n");
u = 0;
do
{
__m128 ssein;
__m128i ref, sseout;
for (int j=0; j < 4; j++)
{
ssein.m128_u32[j] = u + j;
f.u = u + j;
full = float_to_half_full(f);
ref.m128i_u32[j] = full.u;
}
sseout = float_to_half_SSE2(ssein);
for (int j=0; j < 4; j++)
{
if (sseout.m128i_u32[j] != ref.m128i_u32[j])
{
printf("mismatch! val=%08x full=%04x fastSSE2=%04x\n", u+j, ref.m128i_u32[j], sseout.m128i_u32[j]);
return 1;
}
}
u += 4;
if ((u & 0xffffff) == 0)
printf(" %02x\n", (u-1) >> 24);
} while (u);
#endif
#if 0
printf("approx:\n");
u = 0;
do
{
__m128 ssein;
__m128i ref, sseout;
for (int j=0; j < 4; j++)
{
uint x = u + j;
ssein.m128_u32[j] = x;
ref.m128i_u32[j] = float_to_half_foxtk(x);
}
sseout = approx_float_to_half_SSE2(ssein);
for (int j=0; j < 4; j++)
{
if (abs((int) (sseout.m128i_u32[j] - ref.m128i_u32[j])) > 1)
{
printf("mismatch! val=%08x ref=%04x approx=%04x\n", ssein.m128_u32[j], ref.m128i_u32[j], sseout.m128i_u32[j]);
printf("exp = %d\n", ((ssein.m128_u32[j] >> 23) & 255) - 127);
return 1;
}
}
u += 4;
if ((u & 0xffffff) == 0)
printf(" %02x\n", (u - 1) >> 24);
} while (u);
#endif
#if 1
printf("SSE2 RTNE:\n");
u = 0;
do
{
__m128 ssein;
__m128i ref, sseout;
for (int j=0; j < 4; j++)
{
ssein.m128_u32[j] = u + j;
f.u = u + j;
full = float_to_half_full_rtne(f);
ref.m128i_u32[j] = full.u;
}
sseout = float_to_half_rtne_SSE2(ssein);
for (int j=0; j < 4; j++)
{
if (sseout.m128i_u32[j] != ref.m128i_u32[j])
{
printf("mismatch! val=%08x full=%04x fastSSE2=%04x\n", u+j, ref.m128i_u32[j], sseout.m128i_u32[j]);
return 1;
}
}
u += 4;
if ((u & 0xffffff) == 0)
printf(" %02x\n", (u-1) >> 24);
} while (u);
#endif
#if 0
// The "Steinar test" :)
{
FP32 val1 = half_to_float_lit(0x3c00);
FP32 val2 = half_to_float_lit(0x3c01);
FP32 sum;
sum.f = val1.f + val2.f;
printf("sum rtne: 0x%04x (should be 0x4000)\n", float_to_half_full_rtne(sum).u);
FP32 tiny;
tiny.f = 0.5f*5.9604644775390625e-08f;
printf("tiny rtne: 0x%04x (should be 0x0000)\n", float_to_half_full_rtne(tiny).u);
}
#endif
return 0;
}
@rygorous
Copy link
Author

rygorous commented May 5, 2019

javagl: The algorithm is from the ISPC standard library (which is implemented in the ISPC language), this particular implementation (in C++) is mine. IANAL but I believe that for the purposes of copyright that makes me the author.

@MisterDA
Copy link

MisterDA commented Oct 4, 2023

In float_to_half_fast3_rtne, there's this line f.u += ((15 - 127) << 23) + 0xfff; (currently L354).
https://gist.github.com/rygorous/2156668#file-gistfile1-cpp-L354

That's a left-shift of a negative value, and is undefined behaviour, right? See standard 6.5.7§4. Since these are all constants, maybe it can be expressed in a way that won't stress linters?

@MisterDA
Copy link

I went with f.u += ((uint32_t)(15 - 127) << 23) + 0xfff;

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment