Created
March 26, 2012 08:03
-
-
Save rygorous/2203834 to your computer and use it in GitHub Desktop.
float->sRGB8 using SSE2 (and a table)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// float->sRGB8 conversions - two variants. | |
// by Fabian "ryg" Giesen | |
// | |
// I hereby place this code in the public domain. | |
// | |
// Both variants come with absolute error bounds and a reversibility and monotonicity | |
// guarantee (see test driver code below). They should pass D3D10 conformance testing | |
// (not that you can verify this, but still). They are verified against a clean reference | |
// implementation provided below, and the test driver checks all floats exhaustively. | |
// | |
// Variant 1 uses a smaller table (256 bytes) but a bit more code; variant 2 uses | |
// a 416-byte table and has simpler dataflow, so in terms of raw cycle count it should | |
// be faster, at the cost of a few more cache lines polluting L1. Both come in scalar | |
// and SSE2 variants. There's no total SSE2-isms there, so it should be reasonably easy | |
// to port to a different architecture. The biggest single part that would have to be | |
// replaced is the (admittedly weird) usage of PMADDWD (_mm_madd_epi16). The scale/bias | |
// computation can be done in other ways, but this one happened to map quite nicely to | |
// my requirements, so I used it. | |
// | |
// Generators for the tables are also included, for the curious. (Nothing up my sleeve!) | |
#include <stdio.h> | |
#include <math.h> | |
#include <emmintrin.h> | |
typedef unsigned int uint; | |
typedef unsigned char uint8; | |
union FP32 | |
{ | |
uint u; | |
float f; | |
struct | |
{ | |
uint Mantissa : 23; | |
uint Exponent : 8; | |
uint Sign : 1; | |
}; | |
}; | |
// Returns "exact" float value. Round to nearest integer for conversion. | |
// Done this way so that conversion error can be estimated properly. | |
static float float_to_srgb8_ref(float f) | |
{ | |
float s; | |
if (!(f > 0.0f)) // also covers NaNs | |
s = 0.0f; | |
else if (f <= 0.0031308f) | |
s = 12.92f * f; | |
else if (f < 1.0f) | |
s = 1.055f * pow(f, 1.0f / 2.4f) - 0.055f; | |
else | |
s = 1.0f; | |
return s * 255.0f; | |
} | |
static uint8 float_to_srgb8_ref_int(float f) | |
{ | |
return (uint8) (float_to_srgb8_ref(f) + 0.5f); // round, then float->int | |
} | |
static float srgb8_to_float(uint8 val) | |
{ | |
// There's just 256 different input valus - just use a table. | |
static float table[256]; | |
static bool init; | |
if (!init) | |
{ | |
init = true; | |
for (int i=0; i < 256; i++) | |
{ | |
// Matches the conversion mandated by D3D10 spec | |
float c = (float) i * (1.0f / 255.0f); | |
if (c <= 0.04045f) | |
table[i] = c / 12.92f; | |
else | |
table[i] = pow((c + 0.055f) / 1.055f, 2.4f); | |
} | |
} | |
return table[val]; | |
} | |
// This is the version that tries to use a small table (4 cache lines at 64 bytes/line) | |
// at the expense of a few extra instructions. Use "var2" below for a version with | |
// less instructions that uses a somewhat larger table. | |
// | |
// Float is semi-logarithmic. | |
// Linear x->sRGB for x >= 0.0031308 is (mostly) a power function which we | |
// approximate with a bunch of linear segments based on exponent and 3 highest | |
// bits of mantissa (2 was too inaccurate). | |
// | |
// Which exponents do we care about? | |
// Exponent >= 0: value was >=1, so we return 255 (in fact, we min with 1.0f-eps, so this never happens anyway). | |
// Exponent < -9: x < 1/512 which is well into the linear part of the sRGB mapping function. | |
// So the interesting exponent range is [-9,-1]. | |
// | |
// To get a pow2-sized range, we cheat a bit and only store anchors for linear segments in | |
// the exponent range [-8,-1], using linear sRGB part of the formula until 1/256. | |
// This means that we treat a small part of the nonlinear range (namely, the interval | |
// [0.0031308,0.00390625]) as linear. Our linear scale value needs to be adjusted for this. | |
// This is done simply by starting from the "correct" scale value (255*12.92, 0x454de99a) | |
// and doing a binary search for the value that gives the best results (=lowest max error | |
// in this case) across the range we care about. | |
// | |
// The table itself has a bias in the top 16 bits and a scale factor for the linear function | |
// (based on the next 8 mantissa bits after the 3 we already used). Both are scaled to make | |
// good use of the available bits. The format was chosen this way so the linear function | |
// can be evaluated with a single PMADDWD after the mantissa bits were extracted - okay, we do | |
// need to insert one more set bit in the high half for the bias part to work. | |
// These coefficients were determined simply by doing a least-squares fit of a linear function | |
// f(x) = a+b*x inside each "bucket" (see table-making functions below). | |
// | |
// Max error for whole function (integer-rounded result minus "exact" value, as computed in | |
// floats using the official formula): 0.573277 at 0x3b7a88c6 | |
static const uint fp32_to_srgb8_tab3[64] = { | |
0x0b0f01cb, 0x0bf401ae, 0x0ccb0195, 0x0d950180, 0x0e56016e, 0x0f0d015e, 0x0fbc0150, 0x10630143, | |
0x11070264, 0x1238023e, 0x1357021d, 0x14660201, 0x156601e9, 0x165a01d3, 0x174401c0, 0x182401af, | |
0x18fe0331, 0x1a9602fe, 0x1c1502d2, 0x1d7e02ad, 0x1ed4028d, 0x201a0270, 0x21520256, 0x227d0240, | |
0x239f0443, 0x25c003fe, 0x27bf03c4, 0x29a10392, 0x2b6a0367, 0x2d1d0341, 0x2ebe031f, 0x304d0300, | |
0x31d105b0, 0x34a80555, 0x37520507, 0x39d504c5, 0x3c37048b, 0x3e7c0458, 0x40a8042a, 0x42bd0401, | |
0x44c20798, 0x488e071e, 0x4c1c06b6, 0x4f76065d, 0x52a50610, 0x55ac05cc, 0x5892058f, 0x5b590559, | |
0x5e0c0a23, 0x631c0980, 0x67db08f6, 0x6c55087f, 0x70940818, 0x74a007bd, 0x787d076c, 0x7c330723, | |
0x06970158, 0x07420142, 0x07e30130, 0x087b0120, 0x090b0112, 0x09940106, 0x0a1700fc, 0x0a9500f2, | |
}; | |
static uint8 float_to_srgb8(float in) | |
{ | |
static const FP32 almostone = { 0x3f7fffff }; // 1-eps | |
static const FP32 lutthresh = { 0x3b800000 }; // 2^(-8) | |
static const FP32 linearsc = { 0x454c5d00 }; | |
static const FP32 float2int = { (127 + 23) << 23 }; | |
FP32 f; | |
// Clamp to [0, 1-eps]; these two values map to 0 and 1, respectively. | |
// The tests are carefully written so that NaNs map to 0, same as in the reference | |
// implementation. | |
if (!(in > 0.0f)) // written this way to catch NaNs | |
in = 0.0f; | |
if (in > almostone.f) | |
in = almostone.f; | |
// Check which region this value falls into | |
f.f = in; | |
if (f.f < lutthresh.f) // linear region | |
{ | |
f.f *= linearsc.f; | |
f.f += float2int.f; // use "magic value" to get float->int with rounding. | |
return (uint8) (f.u & 255); | |
} | |
else // non-linear region | |
{ | |
// Unpack bias, scale from table | |
uint tab = fp32_to_srgb8_tab3[(f.u >> 20) & 63]; | |
uint bias = (tab >> 16) << 9; | |
uint scale = tab & 0xffff; | |
// Grab next-highest mantissa bits and perform linear interpolation | |
uint t = (f.u >> 12) & 0xff; | |
return (uint8) ((bias + scale*t) >> 16); | |
} | |
} | |
static __m128i float_to_srgb8_SSE2(__m128 f) | |
{ | |
#define SSE_CONST4(name, val) static const __declspec(align(16)) uint name[4] = { (val), (val), (val), (val) } | |
#define CONST(name) *(const __m128i *)&name | |
#define CONSTF(name) *(const __m128 *)&name | |
SSE_CONST4(c_almostone, 0x3f7fffff); | |
SSE_CONST4(c_lutthresh, 0x3b800000); | |
SSE_CONST4(c_tabmask, 63); | |
SSE_CONST4(c_linearsc, 0x454c5d00); | |
SSE_CONST4(c_mantmask, 0xff); | |
SSE_CONST4(c_topscale, 0x02000000); | |
__m128i temp; // temp value (on stack) | |
// Initial clamp | |
__m128 zero = _mm_setzero_ps(); | |
__m128 clamp1 = _mm_max_ps(f, zero); // limit to [0,1-eps] - also nukes NaNs | |
__m128 clamp2 = _mm_min_ps(clamp1, CONSTF(c_almostone)); | |
// Table index | |
__m128i tabidx1 = _mm_srli_epi32(_mm_castps_si128(clamp2), 20); | |
__m128i tabidx2 = _mm_and_si128(tabidx1, CONST(c_tabmask)); | |
_mm_store_si128(&temp, tabidx2); | |
// Table lookup | |
temp.m128i_u32[0] = fp32_to_srgb8_tab3[temp.m128i_u32[0]]; | |
temp.m128i_u32[1] = fp32_to_srgb8_tab3[temp.m128i_u32[1]]; | |
temp.m128i_u32[2] = fp32_to_srgb8_tab3[temp.m128i_u32[2]]; | |
temp.m128i_u32[3] = fp32_to_srgb8_tab3[temp.m128i_u32[3]]; | |
// Linear part of ramp | |
__m128 linear1 = _mm_mul_ps(clamp2, CONSTF(c_linearsc)); | |
__m128i linear2 = _mm_cvtps_epi32(linear1); | |
// Table finisher | |
__m128i tabval = _mm_load_si128(&temp); | |
__m128i tabmult1 = _mm_srli_epi32(_mm_castps_si128(clamp2), 12); | |
__m128i tabmult2 = _mm_and_si128(tabmult1, CONST(c_mantmask)); | |
__m128i tabmult3 = _mm_or_si128(tabmult2, CONST(c_topscale)); | |
__m128i tabprod = _mm_madd_epi16(tabval, tabmult3); | |
__m128i tabshifted = _mm_srli_epi32(tabprod, 16); | |
// Combine linear+table | |
__m128 b_uselin = _mm_cmplt_ps(clamp2, CONSTF(c_lutthresh)); // use linear results | |
__m128i merge1 = _mm_and_si128(linear2, _mm_castps_si128(b_uselin)); | |
__m128i merge2 = _mm_andnot_si128(_mm_castps_si128(b_uselin), tabshifted); | |
__m128i result = _mm_or_si128(merge1, merge2); | |
return result; | |
#undef SSE_CONST4 | |
#undef CONST | |
#undef CONSTF | |
} | |
// This version uses a larger table than the code above (104 entries at 4 bytes each, | |
// or 6.5 cache lines at 64b/line) but is conceptually simpler and needs less instructions. | |
// | |
// The basic ideas are still the same, only this time, we squeeze everything into the | |
// table, even the linear part of the range; since we are approximating the function as | |
// piecewise linear anyway, this is fairly easy. | |
// | |
// In the exact version of the conversion, any value that produces an output float less | |
// than 0.5 will be rounded to an integer of zero. Inverting the linear part of the transform, | |
// we get: | |
// | |
// log2(0.5 / (255 * 12.92)) =~ -12.686 | |
// | |
// which in turn means that any value smaller than about 2^(-12.687) will return 0. | |
// What this means is that we can adapt the clamping code to just clamp to | |
// [2^(-13), 1-eps] and we're covered. This means our table needs to cover a range of | |
// 13 different exponents from -13 to -1. | |
// | |
// The table lookup, storage and interpolation works exactly the same way as in the code | |
// above. | |
// | |
// Max error for the whole function (integer-rounded result minus "exact" value, as computed in | |
// floats using the official formula): 0.544403 at 0x3e9f8000 | |
static const uint fp32_to_srgb8_tab4[104] = { | |
0x0073000d, 0x007a000d, 0x0080000d, 0x0087000d, 0x008d000d, 0x0094000d, 0x009a000d, 0x00a1000d, | |
0x00a7001a, 0x00b4001a, 0x00c1001a, 0x00ce001a, 0x00da001a, 0x00e7001a, 0x00f4001a, 0x0101001a, | |
0x010e0033, 0x01280033, 0x01410033, 0x015b0033, 0x01750033, 0x018f0033, 0x01a80033, 0x01c20033, | |
0x01dc0067, 0x020f0067, 0x02430067, 0x02760067, 0x02aa0067, 0x02dd0067, 0x03110067, 0x03440067, | |
0x037800ce, 0x03df00ce, 0x044600ce, 0x04ad00ce, 0x051400ce, 0x057b00c5, 0x05dd00bc, 0x063b00b5, | |
0x06970158, 0x07420142, 0x07e30130, 0x087b0120, 0x090b0112, 0x09940106, 0x0a1700fc, 0x0a9500f2, | |
0x0b0f01cb, 0x0bf401ae, 0x0ccb0195, 0x0d950180, 0x0e56016e, 0x0f0d015e, 0x0fbc0150, 0x10630143, | |
0x11070264, 0x1238023e, 0x1357021d, 0x14660201, 0x156601e9, 0x165a01d3, 0x174401c0, 0x182401af, | |
0x18fe0331, 0x1a9602fe, 0x1c1502d2, 0x1d7e02ad, 0x1ed4028d, 0x201a0270, 0x21520256, 0x227d0240, | |
0x239f0443, 0x25c003fe, 0x27bf03c4, 0x29a10392, 0x2b6a0367, 0x2d1d0341, 0x2ebe031f, 0x304d0300, | |
0x31d105b0, 0x34a80555, 0x37520507, 0x39d504c5, 0x3c37048b, 0x3e7c0458, 0x40a8042a, 0x42bd0401, | |
0x44c20798, 0x488e071e, 0x4c1c06b6, 0x4f76065d, 0x52a50610, 0x55ac05cc, 0x5892058f, 0x5b590559, | |
0x5e0c0a23, 0x631c0980, 0x67db08f6, 0x6c55087f, 0x70940818, 0x74a007bd, 0x787d076c, 0x7c330723, | |
}; | |
static uint8 float_to_srgb8_var2(float in) | |
{ | |
static const FP32 almostone = { 0x3f7fffff }; // 1-eps | |
static const FP32 minval = { (127-13) << 23 }; | |
FP32 f; | |
// Clamp to [2^(-13), 1-eps]; these two values map to 0 and 1, respectively. | |
// The tests are carefully written so that NaNs map to 0, same as in the reference | |
// implementation. | |
if (!(in > minval.f)) // written this way to catch NaNs | |
in = minval.f; | |
if (in > almostone.f) | |
in = almostone.f; | |
// Do the table lookup and unpack bias, scale | |
f.f = in; | |
uint tab = fp32_to_srgb8_tab4[(f.u - minval.u) >> 20]; | |
uint bias = (tab >> 16) << 9; | |
uint scale = tab & 0xffff; | |
// Grab next-highest mantissa bits and perform linear interpolation | |
uint t = (f.u >> 12) & 0xff; | |
return (uint8) ((bias + scale*t) >> 16); | |
} | |
static __m128i float_to_srgb8_var2_SSE2(__m128 f) | |
{ | |
#define SSE_CONST4(name, val) static const __declspec(align(16)) uint name[4] = { (val), (val), (val), (val) } | |
#define CONST(name) *(const __m128i *)&name | |
#define CONSTF(name) *(const __m128 *)&name | |
SSE_CONST4(c_clampmin, (127 - 13) << 23); | |
SSE_CONST4(c_almostone, 0x3f7fffff); | |
SSE_CONST4(c_lutthresh, 0x3b800000); | |
SSE_CONST4(c_mantmask, 0xff); | |
SSE_CONST4(c_topscale, 0x02000000); | |
__m128i temp; // temp value (on stack) | |
// Initial clamp | |
__m128 clamp1 = _mm_max_ps(f, CONSTF(c_clampmin)); // limit to [clampmin,1-eps] - also nuke NaNs | |
__m128 clamp2 = _mm_min_ps(clamp1, CONSTF(c_almostone)); | |
// Table index | |
__m128i tabidx = _mm_srli_epi32(_mm_castps_si128(clamp2), 20); | |
_mm_store_si128(&temp, tabidx); | |
// Table lookup | |
temp.m128i_u32[0] = fp32_to_srgb8_tab4[temp.m128i_i32[0] - (127-13)*8]; | |
temp.m128i_u32[1] = fp32_to_srgb8_tab4[temp.m128i_i32[1] - (127-13)*8]; | |
temp.m128i_u32[2] = fp32_to_srgb8_tab4[temp.m128i_i32[2] - (127-13)*8]; | |
temp.m128i_u32[3] = fp32_to_srgb8_tab4[temp.m128i_i32[3] - (127-13)*8]; | |
// Finisher | |
__m128i tabval = _mm_load_si128(&temp); | |
__m128i tabmult1 = _mm_srli_epi32(_mm_castps_si128(clamp2), 12); | |
__m128i tabmult2 = _mm_and_si128(tabmult1, CONST(c_mantmask)); | |
__m128i tabmult3 = _mm_or_si128(tabmult2, CONST(c_topscale)); | |
__m128i tabprod = _mm_madd_epi16(tabval, tabmult3); | |
__m128i result = _mm_srli_epi32(tabprod, 16); | |
return result; | |
#undef SSE_CONST4 | |
#undef CONST | |
#undef CONSTF | |
} | |
// ---- | |
// | |
// Table generation functions. These are not required to run the code; they're just | |
// here to show how the tables were computed. | |
//#define GENTABLES | |
#ifdef GENTABLES | |
static void print_table(const char *filename, const char *varname, const uint *table, int nelem) | |
{ | |
FILE *file = fopen(filename, "w"); | |
fprintf(file, "static const uint %s[%d] = {\n", varname, nelem); | |
for (int i=0; i < nelem; i++) | |
{ | |
if ((i & 7) == 0) | |
fprintf(file, " "); | |
fprintf(file, " 0x%08x,", table[i]); | |
if ((i & 7) == 7) | |
fprintf(file, "\n"); | |
} | |
if ((nelem & 7) != 0) | |
fprintf(file, "\n"); | |
fprintf(file, "};\n"); | |
fclose(file); | |
} | |
// Table-generation function for variant 1 above. | |
static void make_tab3() | |
{ | |
static const int nbuckets = 64; | |
static const int bucketsize = 1 << 20; | |
static const int mantshift = 12; | |
FP32 f; | |
uint table[nbuckets]; | |
double sum_aa = bucketsize; | |
double sum_ab = 0.0, sum_bb = 0.0; | |
for (int i=0; i < bucketsize; i++) | |
{ | |
int j = i >> mantshift; | |
sum_ab += j; | |
sum_bb += j*j; | |
} | |
double inv_det = 1.0 / (sum_aa * sum_bb - sum_ab * sum_ab); | |
for (int bucket=0; bucket < nbuckets; bucket++) | |
{ | |
int start = 0x3b800000 + bucket*bucketsize; | |
double sum_a = 0.0; | |
double sum_b = 0.0; | |
// model: a+b*i | |
for (int i=0; i<bucketsize; i++) | |
{ | |
int j = i >> mantshift; | |
f.u = start + i; | |
float val = float_to_srgb8_ref(f.f) + 0.5f; | |
sum_a += val; | |
sum_b += j*val; | |
} | |
// solve | |
double solved_a = inv_det * (sum_bb*sum_a - sum_ab*sum_b); | |
double solved_b = inv_det * (sum_aa*sum_b - sum_ab*sum_a); | |
double scaled_a = solved_a * 65536.0 / 512.0; | |
double scaled_b = solved_b * 65536.0; | |
int int_a = (int) (scaled_a + 0.5f); | |
int int_b = (int) (scaled_b + 0.5f); | |
table[(start / bucketsize) & (nbuckets - 1)] = (int_a << 16) + int_b; | |
printf("%d\n", bucket); | |
} | |
print_table("tab.txt", "fp32_to_srgb8_tab3", table, nbuckets); | |
} | |
// Table-generation function for variant 2 above. | |
static void make_tab4() | |
{ | |
static const int numexp = 13; | |
static const int mantissa_msb = 3; | |
static const int nbuckets = numexp << mantissa_msb; | |
static const int bucketsize = 1 << (23 - mantissa_msb); | |
static const int mantshift = 12; | |
FP32 f; | |
uint table[nbuckets]; | |
double sum_aa = bucketsize; | |
double sum_ab = 0.0, sum_bb = 0.0; | |
for (int i=0; i < bucketsize; i++) | |
{ | |
int j = i >> mantshift; | |
sum_ab += j; | |
sum_bb += j*j; | |
} | |
double inv_det = 1.0 / (sum_aa * sum_bb - sum_ab * sum_ab); | |
for (int bucket=0; bucket < nbuckets; bucket++) | |
{ | |
int start = ((127 - numexp) << 23) + bucket*bucketsize; | |
double sum_a = 0.0; | |
double sum_b = 0.0; | |
// model: a+b*i | |
for (int i=0; i<bucketsize; i++) | |
{ | |
int j = i >> mantshift; | |
f.u = start + i; | |
float val = float_to_srgb8_ref(f.f) + 0.5f; | |
sum_a += val; | |
sum_b += j*val; | |
} | |
// solve | |
double solved_a = inv_det * (sum_bb*sum_a - sum_ab*sum_b); | |
double solved_b = inv_det * (sum_aa*sum_b - sum_ab*sum_a); | |
double scaled_a = solved_a * 65536.0 / 512.0; | |
double scaled_b = solved_b * 65536.0; | |
int int_a = (int) (scaled_a + 0.5f); | |
int int_b = (int) (scaled_b + 0.5f); | |
table[bucket] = (int_a << 16) + int_b; | |
printf("%d\n", bucket); | |
} | |
print_table("tab4.txt", "fp32_to_srgb8_tab4", table, nbuckets); | |
} | |
#endif | |
int main() | |
{ | |
#ifdef GENTABLES | |
// generate the tables | |
make_tab3(); | |
make_tab4(); | |
#endif | |
// First, verify that conversion round-trip works. This is an | |
// obvious and important constraint. | |
for (int i=0; i < 256; i++) | |
{ | |
float f = srgb8_to_float(i); | |
int ref = float_to_srgb8_ref_int(f); | |
int var1 = float_to_srgb8(f); | |
int var2 = float_to_srgb8_var2(f); | |
if (ref != i || var1 != i || var2 != i) | |
{ | |
printf("invertability broken! i=%d ref=%d var1=%d var2=%d\n", i, ref, var1, var2); | |
return 1; | |
} | |
} | |
// Loop over whole 32-bit range, checking whether error is within allowed bounds. | |
// At the same time, we also test whether float->sRGB8 conversion is monotonic. | |
// To make the latter easy, we traverse the range starting from the first "positive" | |
// NaN (which maps to 0), then going over all negative values, finally looping back | |
// to 0 and positive values. That way, we see the whole range in increasing order of | |
// return values. | |
static const int nvar = 2; // number of variants we're testing | |
static const float max_abs_err = 0.6f; | |
float maxerr[nvar] = { 0 }; | |
uint maxerrat[nvar] = { 0 }; | |
int prev[nvar] = { 0 }; | |
uint start = (255 << 23) + 1; // first NaN | |
uint u = start; | |
printf("Scalar\n"); | |
do | |
{ | |
FP32 f; | |
int res[nvar]; | |
f.u = u; | |
float ref_val = float_to_srgb8_ref(f.f); | |
res[0] = float_to_srgb8(f.f); | |
res[1] = float_to_srgb8_var2(f.f); | |
for (int i=0; i < nvar; i++) | |
{ | |
float err = fabs(res[i] - ref_val); | |
if (err >= max_abs_err) | |
{ | |
printf("err=%f at u=%08x for variant %d, must be less than %f!\n", err, u, i + 1, max_abs_err); | |
return 1; | |
} | |
if (err >= maxerr[i]) | |
{ | |
maxerr[i] = err; | |
maxerrat[i] = u; | |
} | |
if (res[i] < prev[i]) | |
{ | |
printf("monotonicity violated at u=%08x for variant %d! result=%d prev=%d\n", u, i + 1, res[i], prev[i]); | |
return 1; | |
} | |
prev[i] = res[i]; | |
} | |
u++; | |
if ((u & 0xffffff) == 1) | |
printf(" %02x\n", u >> 24); | |
} while (u != start); | |
printf("SIMD\n"); | |
do | |
{ | |
__m128 ssein; | |
__m128i sseout[2]; | |
__m128i ref[2]; | |
for (uint j=0; j < 4; j++) | |
{ | |
ssein.m128_u32[j] = u + j; | |
FP32 f; | |
f.u = u + j; | |
ref[0].m128i_u32[j] = float_to_srgb8(f.f); | |
ref[1].m128i_u32[j] = float_to_srgb8_var2(f.f); | |
} | |
sseout[0] = float_to_srgb8_SSE2(ssein); | |
sseout[1] = float_to_srgb8_var2_SSE2(ssein); | |
for (int i=0; i < nvar; i++) | |
{ | |
for (uint j=0; j < 4; j++) | |
{ | |
uint simd = sseout[i].m128i_u32[j]; | |
uint scalar = ref[i].m128i_u32[j]; | |
if (simd != scalar) | |
{ | |
printf("SIMD/scalar mismatch at u=%08x for variant %d: scalar=%d, SIMD=%d\n", u + j, i + 1, scalar, simd); | |
return 1; | |
} | |
} | |
} | |
u += 4; | |
if ((u & 0xffffff) == 1) | |
printf(" %02x\n", u >> 24); | |
} while (u != start); | |
printf("\nAll done!\n\n"); | |
for (int i=0; i < nvar; i++) | |
printf("variant %d: max error %f at 0x%08x\n", i+1, maxerr[i], maxerrat[i]); | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I have another pretty fast but high precision way of converting from linear float to sRGB. after clamping the input I add an offset of 0.0031308f to the input value, create a loopup table index based on subtracting the binary forms of the input number+the offset minus the binary form of the offset, and at that index in a lookup table I have polynomial coefficients which give me the result by computing (a*x + b)*x + c. See https://github.com/Photosounder/rouziclib/blob/master/rouziclib/fastfloat/fastfloat.c#L390
Each entry of the lookup table gives 3 coefficients which make up a quadratic polynomial (like a parabolic curve) which fits a small segment of the function to approximate, hence why I get very high precision with only a 396 byte table.