Skip to content

Instantly share code, notes, and snippets.

@saada2006
Created July 18, 2022 23:15
Show Gist options
  • Save saada2006/779412703273195ce29dddfd2fbff374 to your computer and use it in GitHub Desktop.
Save saada2006/779412703273195ce29dddfd2fbff374 to your computer and use it in GitHub Desktop.
/*
Breinholt and Schierz 1998
Implementation idea: we can recursively subdivide the square into 4 independent parts, and evaluate each seperately
Note that the order in which the squares are evaluated matters!!!
The simplygy this process, let us simplyfy the i1 and i2 to up, down, left and right (according to the direction of the perpendicualer edge from the center):
Up = 0, 0
Down = 1, 1
Right = 0, 1
Left = 1, 0
For up we need to first evalute:
right
up
up
left
For down we need to first evaluate:
right
down
down
left
For right, we need to evaluate
up
right
right
down
For left, we need to evaluate
up
left
left
down
Also apply the correct offset
*/
void HilbertCurve(std::vector<ivec2>& output, ivec2 i, int m, ivec2 offset) {
if (m == 2) {
// Output our square depending on orientation
ivec2 square[4];
if (i.x == 0 && i.y == 0) {
// Start in lower left corner, end in lower right corner (shaped like ^)
square[0] = ivec2(0, 0);
square[1] = ivec2(0, 1);
square[2] = ivec2(1, 1);
square[3] = ivec2(1, 0);
}
else if (i.x == 0 && i.y == 1) {
// Start in lower left corner, end in upper right corner (shaped like >)
square[0] = ivec2(0, 0);
square[1] = ivec2(1, 0);
square[2] = ivec2(1, 1);
square[3] = ivec2(0, 1);
}
else if (i.x == 1 && i.y == 0) {
// Start in upper right corner, end in lower right corner (chaped like <)
square[0] = ivec2(1, 1);
square[1] = ivec2(0, 1);
square[2] = ivec2(0, 0);
square[3] = ivec2(1, 0);
}
else if(i.x == 1 && i.y == 1) {
// Start in upper right corner, end in upper left corner (shaped like U)
square[0] = ivec2(1, 1);
square[1] = ivec2(1, 0);
square[2] = ivec2(0, 0);
square[3] = ivec2(0, 1);
}
output.push_back(square[0] + offset);
output.push_back(square[1] + offset);
output.push_back(square[2] + offset);
output.push_back(square[3] + offset);
}
else {
int a = m / 2;
constexpr ivec2 up(0, 0);
constexpr ivec2 down(1, 1);
constexpr ivec2 right(0, 1);
constexpr ivec2 left(1, 0);
if (i.x == 0 && i.y == 0) {
// Up
HilbertCurve(output, right, a, offset + ivec2(0, 0));
HilbertCurve(output, up, a, offset + ivec2(0, a));
HilbertCurve(output, up, a, offset + ivec2(a, a));
HilbertCurve(output, left, a, offset + ivec2(a, 0));
}
else if (i.x == 0 && i.y == 1) {
// Right
HilbertCurve(output, up, a, offset + ivec2(0, 0));
HilbertCurve(output, right, a, offset + ivec2(a, 0));
HilbertCurve(output, right, a, offset + ivec2(a, a));
HilbertCurve(output, down, a, offset + ivec2(0, a));
}
else if (i.x == 1 && i.y == 0) {
// Left
HilbertCurve(output, down, a, offset + ivec2(a, a));
HilbertCurve(output, left, a, offset + ivec2(0, a));
HilbertCurve(output, left, a, offset + ivec2(0, 0));
HilbertCurve(output, up, a, offset + ivec2(a, 0));
}
else if (i.x == 1 && i.y == 1) {
// Down
HilbertCurve(output, right, a, offset + ivec2(0, a));
HilbertCurve(output, down, a, offset + ivec2(0, 0));
HilbertCurve(output, down, a, offset + ivec2(a, 0));
HilbertCurve(output, left, a, offset + ivec2(a, a));
}
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment