Skip to content

Instantly share code, notes, and snippets.

View saas-coder's full-sized avatar

Ninja saas-coder

  • Entrepreneur
  • Morocco
  • 19:33 (UTC -12:00)
View GitHub Profile
@saas-coder
saas-coder / GradientDescent.hpp
Last active December 13, 2020 14:14
Implementing Gradient Descent for linear and logistic regression
#include <armadillo>
#include <bits/stdc++.h>
#include <conio.h>
using namespace std;
double LeastSquaesCost(const mat& X, const mat& y, const mat& parameters)
{
vec tmp(X * parameters - y);
tmp = dot(tmp, tmp);
double s = sum(tmp);
@saas-coder
saas-coder / QuasiNewton.hpp
Created December 15, 2020 14:44
Quasi Newton : BFGS and BROYDEN and DFP and SR1 for regression
void quasinewton(const mat& X,
const mat& y,
mat& parameters,
double computeCost(const mat& X, const mat& y, const mat& parameters), // LeastSquaesCost or logisticCost
vec computeGradient(const mat& X, const mat& y, const mat& parameters), // LeastSquaesGradient or logisticGradient
mat computeHessian(const mat& X, const mat& y, const mat& parameters), // logisticHessian or
string method = "BFGS", // BFGS or BROYDEN or DFP or SR1
string costs_file = "costs.out",
string parameters_file = "parameters.out",
string step = "armijo", // double as string like "0.01" by default armijo rule
@saas-coder
saas-coder / audit-data-notebook.ipynb
Last active January 2, 2021 12:43
Audit Data Notebook.ipynb
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@saas-coder
saas-coder / nasa.ipynb
Last active January 15, 2021 20:45
Nasa.ipynb
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
# installation
!pip install knockknock #For sending message to telegram
# Importation
from knockknock import telegram_sender
from kaggle_secrets import UserSecretsClient
user_secrets = UserSecretsClient()
token = user_secrets.get_secret("token")
chat_id = user_secrets.get_secret("chat_id")
urls = """https://api.zindi.africa/v1/competitions/lacuna-correct-field-detection-challenge/files/sentinel-2-part1.zip
https://api.zindi.africa/v1/competitions/lacuna-correct-field-detection-challenge/files/extra_train-planet-dec17.zip
https://api.zindi.africa/v1/competitions/lacuna-correct-field-detection-challenge/files/extra_train-planet-jun18.zip
https://api.zindi.africa/v1/competitions/lacuna-correct-field-detection-challenge/files/starter-notebook.ipynb
https://api.zindi.africa/v1/competitions/lacuna-correct-field-detection-challenge/files/extra_train-sentinel.zip
https://api.zindi.africa/v1/competitions/lacuna-correct-field-detection-challenge/files/sentinel_for_points_collected_in_2015.zip
https://api.zindi.africa/v1/competitions/lacuna-correct-field-detection-challenge/files/extra_train-planet-jun17.zip
https://api.zindi.africa/v1/competitions/lacuna-correct-field-detection-challenge/files/extra_train-planet-dec18.zip
https://api.zindi.africa/v1/competitions/lacuna-correct-field-detection-challenge/f
import numpy as np
from scipy.fftpack import fft
def vehicle_condition_detection(acc_info, g, h, h_prime, h_1, h_2, T):
time = 0
vehicle_condition = "Unknown"
while True:
for t in range(len(acc_info)):
Ax, Ay, Az = acc_info[t]
import librosa
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
def plot_spectrogram(sound, sr):
S = librosa.feature.melspectrogram(sound, sr=sr)
log_S = librosa.power_to_db(S, ref=np.max)
plt.figure(figsize=(12, 4))
librosa.display.specshow(log_S, sr=sr, x_axis='time', y_axis='mel')
<?xml version="1.0" encoding="UTF-8"?>
<Response>
<Say voice="woman" language="es-ES"> Hola cómo estás </Say>
</Response>