Skip to content

Instantly share code, notes, and snippets.

@sabas1080
Created Apr 3, 2019
Embed
What would you like to do?
Simple demo of sending and receiving data with the RFM95 LoRa radio with CircuitPython and USBStick Electronic Cats
# Simple demo of sending and receiving data with the RFM95 LoRa radio.
# Based in the work of: Tony DiCola
import board
import busio
import digitalio
import adafruit_rfm9x
# Define radio parameters.
RADIO_FREQ_MHZ = 915.0 # Frequency of the radio in Mhz. Must match your
# module! Can be a value like 915.0, 433.0, etc.
# Define pins connected to the chip, use these if wiring up the breakout according to the guide:
CS = digitalio.DigitalInOut(board.RFM9X_CS)
RESET = digitalio.DigitalInOut(board.RFM9X_RST)
# Initialize SPI bus.
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
# Initialze RFM radio
rfm9x = adafruit_rfm9x.RFM9x(spi, CS, RESET, RADIO_FREQ_MHZ)
# Note that the radio is configured in LoRa mode so you can't control sync
# word, encryption, frequency deviation, or other settings!
# You can however adjust the transmit power (in dB). The default is 13 dB but
# high power radios like the RFM95 can go up to 23 dB:
rfm9x.tx_power = 23
# Send a packet. Note you can only send a packet up to 252 bytes in length.
# This is a limitation of the radio packet size, so if you need to send larger
# amounts of data you will need to break it into smaller send calls. Each send
# call will wait for the previous one to finish before continuing.
rfm9x.send('Hello world!\r\n')
print('Sent hello world message!')
# Wait to receive packets. Note that this library can't receive data at a fast
# rate, in fact it can only receive and process one 252 byte packet at a time.
# This means you should only use this for low bandwidth scenarios, like sending
# and receiving a single message at a time.
print('Waiting for packets...')
while True:
packet = rfm9x.receive()
# Optionally change the receive timeout from its default of 0.5 seconds:
#packet = rfm9x.receive(timeout_s=5.0)
# If no packet was received during the timeout then None is returned.
if packet is None:
print('Received nothing! Listening again...')
else:
# Received a packet!
# Print out the raw bytes of the packet:
print('Received (raw bytes): {0}'.format(packet))
# And decode to ASCII text and print it too. Note that you always
# receive raw bytes and need to convert to a text format like ASCII
# if you intend to do string processing on your data. Make sure the
# sending side is sending ASCII data before you try to decode!
packet_text = str(packet, 'ascii')
print('Received (ASCII): {0}'.format(packet_text))
# Also read the RSSI (signal strength) of the last received message and
# print it.
rssi = rfm9x.rssi
print('Received signal strength: {0} dB'.format(rssi))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment