/expo_histo.py Secret
Created
November 29, 2021 19:47
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
from skimage import exposure, img_as_float | |
from skimage.color import rgb2gray | |
import numpy as np | |
# read image | |
img = plt.imread("sumiremaru.jpg") | |
img1 = rgb2gray(img_as_float(img)) | |
img1.shape | |
#(810, 810) | |
fig, ax = plt.subplots(1,1,figsize=(5,5)) | |
ax.imshow(img1,cmap="gray") | |
ax.set_title("sumire-maru") | |
ax.axis("off") | |
plt.tight_layout() | |
plt.savefig("expo_histo_1.jpg",dpi=100) | |
plt.show() | |
#make histo data | |
expo_hist,expo_bin = exposure.histogram(img1,nbins=10) | |
np_hist,np_bin = np.histogram(img1,bins=10) | |
plt_hist, plt_bins, patches = ax.hist(img1.flatten(), bins=10) | |
len(expo_bin),len(np_bin),len(plt_bins) | |
#(10, 11, 11) | |
expo_hist==np_hist | |
#array([ True, True, True, True, True, True, True, True, True, | |
# True]) | |
expo_hist==plt_hist | |
#array([ True, True, True, True, True, True, True, True, True, | |
# True]) | |
#show | |
fig, ax = plt.subplots(dpi=100) | |
ax.bar(np_bin[:-1], np_hist,width=np.diff(np_bin)[0],alpha=.5,label="np.histogram,bins[:-1]") | |
ax.bar(expo_bin, expo_hist,width=np.diff(expo_bin)[0],alpha=.5,label="exposure.histogram") | |
ax.bar(np_bin[1:], np_hist,width=np.diff(np_bin)[0],alpha=.5,label="np.histogram,bins[1:]") | |
plt_hist, plt_bins, patches = ax.hist(img1.flatten(),bins=10,alpha=.5,color="C3",label="plt.hist") | |
for direction in ["right", "top"]: | |
ax.spines[direction].set_visible(False) | |
ax.legend(bbox_to_anchor=(1, 0.8)) | |
ax.set(xlabel="bins",ylabel="Frequency") | |
plt.savefig("expo_histo_2.jpg",dpi=100) | |
plt.show() | |
## offset | |
offset=-110000 | |
fig, ax = plt.subplots(dpi=100) | |
ax.bar(np_bin[:-1], np_hist,width=np.diff(np_bin)[0],alpha=.75,label="np.histogram, bins[:-1]") | |
ax.bar(expo_bin, expo_hist,bottom=offset,width=np.diff(expo_bin)[0],alpha=.75,label="exposure.histogram") | |
ax.bar(np_bin[1:], np_hist,bottom=2*offset,width=np.diff(np_bin)[0],alpha=.75,label="np.histogram, bins[1:]") | |
plt_hist, plt_bins, patches = ax.hist(img1.flatten(),bins=10,bottom=-1*offset,alpha=.75,color="C3",label="plt.hist") | |
for direction in ["right", "top"]: | |
ax.spines[direction].set_visible(False) | |
ax.legend(bbox_to_anchor=(1, 0.8)) | |
ax.set(xlabel="bins",ylabel="Frequency",yticklabels="") | |
plt.savefig("expo_histo_3.jpg",dpi=100) | |
plt.show() | |
## normalize | |
expo_hist2,expo_bin2 = exposure.histogram(img1,nbins=10,normalize=True) | |
expo_hist2.sum() | |
#1.0 | |
fig, ax = plt.subplots(dpi=100) | |
ax.bar(expo_bin2, expo_hist2,width=expo_bin2[1]-expo_bin2[0],alpha=.5,color="C1",edgecolor="k",label="exposure.histogram") | |
ax.set_title("normalize=True") | |
for direction in ["right", "top"]: | |
ax.spines[direction].set_visible(False) | |
ax.legend() | |
ax.set(xlabel="bins",ylabel="Frequency") | |
plt.savefig("expo_histo_4.jpg",dpi=100) | |
plt.show() | |
fig, ax = plt.subplots(dpi=100) | |
plt_hist, plt_bins, patches = ax.hist(img1.flatten(),bins=10,color="C3",edgecolor="k",density=True,label="plt.hist") | |
ax.set_title("normalize=True") | |
for direction in ["right", "top"]: | |
ax.spines[direction].set_visible(False) | |
ax.legend() | |
ax.set(xlabel="bins",ylabel="Frequency") | |
plt.savefig("expo_histo_5.jpg",dpi=100) | |
plt.show() | |
plt_hist.sum() | |
#10.008340283569641 | |
plt_hist.sum()*np.diff(plt_bins)[0] | |
#1.0 | |
np_hist,np_bin = np.histogram(img1,bins=10,density=True) | |
np_hist.sum() | |
#10.008340283569641 | |
#version | |
import matplotlib,skimage | |
print(matplotlib.__version__) | |
print(skimage.__version__) | |
print(np.__version__) | |
3.5.0 | |
0.18.3 | |
1.21.4 | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment