Created
September 12, 2011 21:10
-
-
Save samth/1212440 to your computer and use it in GitHub Desktop.
Poisson-distributed random numbers in Typed Racket
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#lang racket/base | |
;; translated from an algorithm in C from | |
;; Hyberts SG, Takeuchi K, Wagner G (2010) Poisson-gap sampling and | |
;; forward maximum entropy reconstruction for enhancing the resolution | |
;; and sensitivity of protein NMR Data. J Am Chem Soc 132:2145–2147 | |
;; generate random Poisson-distributed numbers as given | |
;; by Donald E. Knuth (1969). Seminumerical Algorithms. | |
;; The Art of Computer Programming, Volume 2. Addison Wesley | |
(require ffi/unsafe racket/cmdline) | |
(define srand48 (get-ffi-obj 'srand48 #f (_fun _long -> _void))) | |
(define drand48 (get-ffi-obj 'drand48 #f (_fun -> _double))) | |
(define-syntax-rule (while condition body ...) | |
(let L () (when condition body ... (L)))) | |
(define-syntax-rule (do-while condition body ...) | |
(let L () (when (let () body ... condition) (L)))) | |
;(: poisson : (Float -> Integer)) | |
(define (poisson lmbd) | |
(define L (exp (- lmbd))) | |
(define k 0) | |
(define p 1.) | |
(do-while (p . >= . L) | |
(define u (drand48)) | |
(set! p (* p u)) | |
(set! k (+ k 1))) | |
(- k 1)) | |
;(: run (Exact-Positive-Integer Fixnum Fixnum -> (Listof Integer))) | |
(define (run s p z) | |
(define ld (/ (exact->inexact z) p)) | |
(define adj (* 2.0 (- ld 1))) | |
(define i 0) (define j 0) | |
(define k 0) (define n 0) | |
(define v (make-vector z)) | |
(srand48 s) | |
(do-while (not (= n p)) | |
(set! i 0) | |
(set! n 0) | |
(while (< i z) | |
(vector-set! v n i) | |
(set! i (+ i 1)) | |
(set! k (poisson (* adj (sin (* (/ (+ i 0.5) (+ z 1.)) 1.5707963268))))) | |
(set! i (+ i k)) | |
(set! n (+ n 1))) | |
(when (> n p) (set! adj (* adj 1.02))) | |
(when (< n p) (set! adj (/ adj 1.02)))) | |
(for/list ([j (in-range p)]) (vector-ref v j))) | |
(command-line | |
#:args | |
(s p z) | |
(void (run (string->number s) (string->number z) (string->number p)))) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#lang typed/racket | |
(require racket/cmdline) | |
;; translated from an algorithm in C from | |
;; Hyberts SG, Takeuchi K, Wagner G (2010) Poisson-gap sampling and | |
;; forward maximum entropy reconstruction for enhancing the resolution | |
;; and sensitivity of protein NMR Data. J Am Chem Soc 132:2145–2147 | |
;; generate random Poisson-distributed numbers as given | |
;; by Donald E. Knuth (1969). Seminumerical Algorithms. | |
;; The Art of Computer Programming, Volume 2. Addison Wesley | |
;#| | |
;(require ffi/unsafe) | |
;(define srand48 (get-ffi-obj 'srand48 #f (_fun _long -> _void))) | |
;(define drand48 (get-ffi-obj 'drand48 #f (_fun -> _double))) | |
;|# | |
(: poisson (Float -> Integer)) | |
(define (poisson lmbd) | |
(define L (exp (- lmbd))) | |
(let: loop : Integer ([p : Float 1.] [k : Integer 0]) | |
(define p* (* p #;(drand48) (random))) | |
(if (p* . >= . L) (loop p* (+ k 1)) k))) | |
#; | |
(define (main s* p* z*) | |
(define s (string->number s*)) | |
(define p (string->number p*)) | |
(define z (string->number z*)) | |
(run s p z)) | |
(: run (Positive-Fixnum Fixnum Index -> (Listof Integer))) | |
(define (run s p z) | |
(define ld (/ (exact->inexact z) p)) | |
;(: k Fixnum) | |
;(: i Fixnum) (: n Fixnum) | |
(: v (Vectorof Integer)) | |
(define v (make-vector z)) | |
(random-seed s) #;(srand48 s) | |
(let outer ([n 0] [adj (* 2.0 (- ld 1))] [k 0]) | |
(: n* Integer) (: k* Integer) | |
(define-values (n* k*) | |
(let inner ([i 0] [n 0] [k k]) | |
(cond [(< i z) | |
(vector-set! v n i) | |
(define i* (+ 1 i)) | |
(define k* (poisson (* adj (sin (* (/ (+ i* 0.5) (+ z 1.)) 1.5707963268))))) | |
(define i** (+ i* k*)) | |
(inner i** (+ n 1) k*)] | |
[else (values n k)]))) | |
(unless (= n* p) | |
(define adj* (cond [(> n* p) (* adj 1.02)] | |
[(< n* p) (/ adj 1.02)] | |
[else adj])) | |
(outer n* adj* k*))) | |
(for/list: : (Listof Integer) ([e v] [_ (in-range p)]) e)) | |
(define-predicate pos-fix? Positive-Fixnum) | |
(command-line | |
#:args | |
(#{s : String} #{p : String} #{z : String}) | |
(void (run (assert (string->number s) pos-fix?) (assert (string->number p) pos-fix?) (assert (string->number z) index?)))) | |
#; | |
(unless (equal? '(0 1 2 4 5 6 7 10 11 13 14 16 18 20 22 23 27 32 34 37 41 45 52 58 65 68 77 81 90 96) | |
(run 1 30 100)) | |
(error 'fail)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#lang racket/base | |
;; translated from an algorithm in C from | |
;; Hyberts SG, Takeuchi K, Wagner G (2010) Poisson-gap sampling and | |
;; forward maximum entropy reconstruction for enhancing the resolution | |
;; and sensitivity of protein NMR Data. J Am Chem Soc 132:2145–2147 | |
;; generate random Poisson-distributed numbers as given | |
;; by Donald E. Knuth (1969). Seminumerical Algorithms. | |
;; The Art of Computer Programming, Volume 2. Addison Wesley | |
(require racket/cmdline) | |
(define-syntax-rule (while condition body ...) | |
(let L () (when condition body ... (L)))) | |
(define-syntax-rule (do-while condition body ...) | |
(let L () (when (let () body ... condition) (L)))) | |
;(: poisson : (Float -> Integer)) | |
(define (poisson lmbd) | |
(define L (exp (- lmbd))) | |
(define k 0) | |
(define p 1.) | |
(do-while (p . >= . L) | |
(define u (random)) | |
(set! p (* p u)) | |
(set! k (+ k 1))) | |
(- k 1)) | |
;(: run (Exact-Positive-Integer Fixnum Fixnum -> (Listof Integer))) | |
(define (run s p z) | |
(define ld (/ (exact->inexact z) p)) | |
(define adj (* 2.0 (- ld 1))) | |
(define i 0) (define j 0) | |
(define k 0) (define n 0) | |
(define v (make-vector z)) | |
(random-seed s) | |
(do-while (not (= n p)) | |
(set! i 0) | |
(set! n 0) | |
(while (< i z) | |
(vector-set! v n i) | |
(set! i (+ i 1)) | |
(set! k (poisson (* adj (sin (* (/ (+ i 0.5) (+ z 1.)) 1.5707963268))))) | |
(set! i (+ i k)) | |
(set! n (+ n 1))) | |
(when (> n p) (set! adj (* adj 1.02))) | |
(when (< n p) (set! adj (/ adj 1.02)))) | |
(for/list ([j (in-range p)]) (vector-ref v j))) | |
(command-line | |
#:args | |
(s p z) | |
(void (run (string->number s) (string->number z) (string->number p)))) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <stdlib.h> | |
#include <stdio.h> | |
#include <math.h> | |
// generate random Poisson-distributed numbers as given | |
// by Donald E. Knuth (1969). Seminumerical Algorithms. | |
// The Art of Computer Programming, Volume 2. Addison Wesley | |
int poisson ( double lmbd ) | |
{ | |
double L = exp( -lmbd ); | |
int k = 0; | |
double p = 1; | |
do { | |
double u = drand48(); | |
p *= u; | |
k += 1; | |
} while ( p >= L ); | |
return( k-1 ); | |
} | |
int main ( int argc, char** argv ) | |
{ | |
float s = atof( argv[1] ); // seed value e.g. 1.0 | |
int p = atoi( argv[2] ); // sampled # of indices e.g 64 | |
int z = atoi( argv[3] ); // total # of indices e.g. 256 | |
int i; // Fourier grid index, e.g. 1 through 256 | |
int k; // generated gap size | |
int n; // temporary # indices | |
int *v; // temporary storage vector | |
int j; // wrking variable | |
float ld = (float) z / (float) p; // establish 1/fraction | |
float adj = 2.0*(ld-1); // initial guess of adjustment | |
srand48( s ); | |
v = ( int* ) malloc( z*sizeof( z ) ); | |
do { | |
i = 0; n = 0; | |
while ( i < z ) { | |
v[n] = i; | |
i += 1; | |
k =poisson(adj*sin((float)(i+0.5)/(float)(z+1)*1.5707963268) ); | |
i += k; | |
n += 1; | |
} | |
if ( n > p ) adj *= 1.02; // too many pts created | |
if ( n < p ) adj /= 1.02; // too few pts created | |
} while ( n != p ); // if not at first, try, try again | |
//for ( j = 0 ; j < p ; j++ ) printf( "%d\n", v[j] ); | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#lang typed/racket | |
;; translated from an algorithm in C from | |
;; Hyberts SG, Takeuchi K, Wagner G (2010) Poisson-gap sampling and | |
;; forward maximum entropy reconstruction for enhancing the resolution | |
;; and sensitivity of protein NMR Data. J Am Chem Soc 132:2145–2147 | |
;; generate random Poisson-distributed numbers as given | |
;; by Donald E. Knuth (1969). Seminumerical Algorithms. | |
;; The Art of Computer Programming, Volume 2. Addison Wesley | |
(define-syntax-rule (while condition body ...) | |
(let L () (when condition body ... (L)))) | |
(define-syntax-rule (do-while condition body ...) | |
(let L () (when (let () body ... condition) (L)))) | |
(: poisson : (Float -> Integer)) | |
(define (poisson lmbd) | |
(define L (exp (- lmbd))) | |
(define k 0) | |
(define p 1.) | |
(do-while (p . >= . L) | |
(define u (random) #;(drand48)) | |
(set! p (* p u)) | |
(set! k (+ k 1))) | |
(- k 1)) | |
(: run (Exact-Positive-Integer Fixnum Fixnum -> (Listof Integer))) | |
(define (run s p z) | |
(define ld (/ (exact->inexact z) p)) | |
(define adj (* 2.0 (- ld 1))) | |
(define i 0) (define j 0) | |
(define k 0) (define n 0) | |
(define v (make-vector z)) | |
(random-seed s) #;(srand48 s) | |
(do-while (not (= n p)) | |
(set! i 0) | |
(set! n 0) | |
(while (< i z) | |
(vector-set! v n i) | |
(set! i (+ i 1)) | |
(set! k (poisson (* adj (sin (* (/ (+ i 0.5) (+ z 1.)) 1.5707963268))))) | |
(set! i (+ i k)) | |
(set! n (+ n 1))) | |
(when (> n p) (set! adj (* adj 1.02))) | |
(when (< n p) (set! adj (/ adj 1.02)))) | |
(for/list ([j (in-range p)]) (vector-ref v j))) | |
(define-predicate pos-fix? Positive-Fixnum) | |
(command-line | |
#:args | |
(#{s : String} #{p : String} #{z : String}) | |
(void (run (assert (string->number s) pos-fix?) (assert (string->number p) pos-fix?) (assert (string->number z) index?)))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment