-
-
Save samueltangz/2b961660fb1d3b60e013f40ba1ef5000 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# -*- coding: UTF-8 -*- | |
from gmpy2 import is_prime | |
from Crypto.Util.number import * | |
from Crypto.Cipher import AES | |
from math import gcd | |
def main(): | |
# M is prime number! | |
X = [ | |
171988490999968958074461906163126253991, | |
149759767375550138601832127658924300851, | |
21392649857558566532141954695914673807, | |
52236160143411890255640980579270361316, | |
22081153611165744867415455406756477578 | |
] | |
# Find A, B, M | |
# X[4] - X[3] = A * (X[3] - X[2]) (mod M) | |
# X[3] - X[2] = A * (X[2] - X[1]) (mod M) | |
# X[2] - X[1] = A * (X[1] - X[0]) (mod M) | |
d = [X[i+1] - X[i] for i in range(4)] | |
# d[3] = A * d[2] (mod M) | |
# d[2] = A * d[1] (mod M) | |
# d[1] = A * d[0] (mod M) | |
# => d[0]*d[2] = d[1]**2 | |
# => d[1]*d[3] = d[2]**2 | |
M = gcd(d[0]*d[2] - d[1]**2, d[1]*d[3] - d[2]**2) | |
assert is_prime(M) # If not, just factorize it... | |
A = d[1] * pow(d[0], -1, M) % M | |
B = (X[1] - A * X[0]) % M | |
assert (A * X[0] + B) % M == X[1] | |
assert (A * X[1] + B) % M == X[2] | |
assert (A * X[2] + B) % M == X[3] | |
assert (A * X[3] + B) % M == X[4] | |
key = (A * X[4] + B) % M | |
nonce = b'\x0b:\xce<\xb0\xe8@,' | |
c = b'\\\x8f\xfayc\xce\xfc<`\xc7\xe1\x91Jh\x0c6 \x8a\xd8\x0f\xdc^\xa3\xb9\xa1Kv\x96O<\xbcx\x8e\xea\xc3&' | |
cipher = AES.new(long_to_bytes(key), AES.MODE_CTR, nonce=nonce) | |
flag = cipher.decrypt(c) | |
print(flag) | |
# kurenaifCTF{Less_numbers_are_better} | |
if __name__ == '__main__': | |
main() | |
''' | |
A = 128 bit | |
B = 128 bit | |
M = 128 bit prime | |
S = 128 bit | |
outputs: | |
X0 = (A * S + B) % M | |
X1 = (A * X0 + B) % M | |
X2 = (A * X1 + B) % M | |
X3 = (A * X2 + B) % M | |
X4 = (A * X3 + B) % M | |
X5 = (A * X4 + B) % M | |
''' |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment