Skip to content

Instantly share code, notes, and snippets.

This file has been truncated, but you can view the full file.
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>plotly</title>
<script>(function() {
// If window.HTMLWidgets is already defined, then use it; otherwise create a
// new object. This allows preceding code to set options that affect the
// initialization process (though none currently exist).
window.HTMLWidgets = window.HTMLWidgets || {};
#==================================================================================================================================
# Routine : Main R program
#
# Purpose : Visualization and Preprocessing According to Kriging and MBA Interpolation Method using KLAPS numerical Prediction Model Data
#
# Author : MS. Sang-Ho Lee
#
# Revisions: V1.0 April 13, 2020 First release (MS. Sang-Ho Lee)
#==================================================================================================================================
#======================================================================================================================================
# Routine : Main R program
#
# Purpose : Visualization and Forecast the Number of Deaths Using Corona 19 Data and Regression Models of Linear and Nonlinear
#
# Author : MS. Sang-Ho Lee
#
# Revisions: V1.0 April 07, 2019 First release (MS. Sang-Ho Lee)
#======================================================================================================================================
pro Visualization_Using_Sun_Position
cd, 'C:\SYSTEM\PROG\IDL\Satellite_Angle'
dim = [360, 180]
lon1D = fltarr(dim[0])
lat1D = fltarr(dim[1])
valZenith2D = fltarr(dim[0], dim[1])
valAzimuth2D = fltarr(dim[0], dim[1])
pro Visualization_Using_Weather_Data_of_Grib_Format
cd, 'C:\SYSTEM\PROG\IDL\GRIB'
gribFile = 'INPUT/interim_sfc_2014102500_00.grib'
varName = ['srp', 'tcc', '10u', '10v', '2mT', 'lcc', 'mcc', 'hcc', 'skt']
dim = [1440, 721]
pro Visualization_Using_Aerosol_Data_of_HDF5_Format
cd, 'C:\SYSTEM\PROG\IDL\HDF5'
dim = [1934, 1544]
hdf4_file='INPUT/coms_cn_geos_lonlat.hdf'
hdf5_file = "INPUT/coms_mi_le2_aod_cn_201402010000.h5"
file_id = h5f_open(hdf5_file)
pro Visualization_Using_Ozone_Data_of_HDF_Format
cd, 'C:\SYSTEM\PROG\IDL\HDF'
fileList = file_search("./INPUT/*.hdf", count = iNumber)
dim = [288, 180, iNumber]
lon1D = fltarr(dim[0])
lat1D = fltarr(dim[1])
PRO Visualization_Using_Air_Temperature_Data_of_NetCDF_Format
cd, 'C:\SYSTEM\PROG\IDL\NetCDF'
file = "INPUT/air.sig995.2014.nc"
fileid = ncdf_open(file)
file_struct = ncdf_inquire(fileid)
nvar = file_struct.nvars
pro Visualization_Using_Ozone_Data_of_Ascii_Format
cd, 'C:\SYSTEM\PROG\IDL\OZONE'
dim = [288, 180]
val2D = fltarr(dim[0], dim[1])
lon1D = fltarr(dim[0])
lat1D = fltarr(dim[1])
pro Visualization_Using_Map_Data
cd, 'C:\SYSTEM\PROG\IDL\MAPPING'
dim = [4]
lat1D = [39, 36.52, 35.13, 33.3]
lon1D = [116, 126.29, 126.8, 126.6]
ROI = [32, 44, 110, 135]