Skip to content

Instantly share code, notes, and snippets.

View santhosh47's full-sized avatar
:octocat:
Looking for Job Opportunities

Santhosh Shankar santhosh47

:octocat:
Looking for Job Opportunities
  • Accenture Solutions Private Limited
  • Chennai, Tamil Nadu, India
View GitHub Profile
'''This script goes along the blog post
"Building powerful image classification models using very little data"
from blog.keras.io.
It uses data that can be downloaded at:
https://www.kaggle.com/c/dogs-vs-cats/data
In our setup, we:
- created a data/ folder
- created train/ and validation/ subfolders inside data/
- created cats/ and dogs/ subfolders inside train/ and validation/
- put the cat pictures index 0-999 in data/train/cats
from keras.models import Sequential
from keras.layers import Conv2D, MaxPool2D, Flatten, Dense, InputLayer, BatchNormalization, Dropout
# build a sequential model
model = Sequential()
model.add(InputLayer(input_shape=(224, 224, 3)))
# 1st conv block
model.add(Conv2D(25, (5, 5), activation='relu', strides=(1, 1), padding='same'))
model.add(MaxPool2D(pool_size=(2, 2), padding='same'))