Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
format_authors

Instructions to use format_authors function

Sarah Nelson, TOPMed DCC sarahcn@uw.edu

Purpose

This function converts a table of TOPMed banner authors into a formatted list of authors and institutional affiliations, i.e. as might be needed for supplementary material in a manuscript.

Step 1: Prepare the input table

  1. Download the banner author list as .csv from the TOPMed website
    • Optionally, use a file provided to you directly by the DCC or another co-author
  2. Follow these instructions to open the .csv file in Excel, so you do not lose the leading zeros on zip code
  3. If you have authors to exclude (i.e. main paper authors), add a column and put any character (e.g. "Y" or "T") there for those who should be excluded
    • It does not matter what you call this column, as you'll provide the function with a column index rather than a column name
    • It does not matter what character you put, as long as the cell is not empty for those you're excluding and empty for those you aren't excluding
  4. If authors with multiple institutions are not already split into different rows (i.e. one row for each author-institution pair), then you should split into multiple rows
    • Note the website list will eventually be modified to indicate only a primary institution for each author, absolving this issue
  5. Save the modified banner author file

Step 2: Run the R function

  1. Open an R session
  2. Source the function (credit: jtoll)
# 1) install devtools
if (!("devtools" %in% installed.packages()[, 1])) {
  install.packages("devtools")
}

# 2) source
# library(devtools)
# source_gist("https://gist.github.com/sarahcn/7f25092dfbdc979fb75b82225961108f", filename="format_author_list.R")

# - or -

devtools::source_gist("7f25092dfbdc979fb75b82225961108f", filename="format_author_list.R")
  1. Run the function

See parameter definitions, defaults, and example syntax in the format_author_list.R file.

Step 3: Prepare the final output file

The function outputs an html file to make use of html tags for formatting superscripts. In my experience, opening the html file and then copy/pasting into a Microsoft Word document preserves the superscripts. Alternatively, you could print the html file to pdf.

Please note to check over the output; manual editing may be needed to restore special characters in institutions (i.e. Fundação de Hematologia).

*.R~
*.csv
*.html
*test*
*.xlsx
##' Format author list, i.e. for TOPMed banner authorship
##'
##' @param input Either a .csv filename containing author information OR the file already read into memory
##' @param namecol_idx Column index of author names, formatted as "Last, First Middle"
##' @param affilcol_idxs Column indices of affiliation elements, in the order they should be listed (see \code{details})
##' @param excludecol_idx Column index of column indicating authors to exclude from output. If left NULL (default), no authors will be excluded.
##' @param affil_sep Character that should separate affiliation elements
##' @param affil_numstart Starting affiliation number, defaults to 1
##' @param out_filename Output filename (".html" file extension will be appended)
##' @param alpha_sort if TRUE, sort author list alphabetically by name column; otherwise retain input order
##' @param verbose if TRUE, print to screen the excluded author names
##'
##' @return Write out an html-formatted file with formatted author list and affiliations.
##'
##' @details In the \code{input}, an exclude column with any non-NA character will cause the author on that line to be excluded from the output line. I.e., indicate a paper's main authors with a "T" or "Y" in the column specified with the \code{excludecol_idx} argument. Output will be an html-formatted file containing author names with numeric superscripts corresponding to institutional details below. The html can then be copy/pasted into MS Word, or printed straight to pdf. Authors with multiple affiliations will be handled correctly if each affiliation is listed on a separate line.
##'
##' @examples
##' \dontrun{
##' system("head banner_authors.csv")
##' Name,Institution(s),City,State,Country,Zip,exclude,
##' "Kaplan, Robert",Albert Einstein College of Medicine,New York,NY,US,10461,T,
##' "Smoller, Sylvia",Albert Einstein College of Medicine,New York,NY,US,10461,,
##' "Sheehan, Vivien",Baylor College of Medicine,Houston,TX,US,77030,,
##' "Custer, Brian",Blood Systems Research Institute UCSF,San Francisco,CA,US,94118,T,
##' "Kelly, Shannon",Blood Systems Research Institute UCSF,San Francisco,CA,US,94118,,
##' "Konkle, Barbara",Blood Works Northwest,Seattle,WA,US,98104,,
##' "Huston, Haley",Blood Works Northwest,Seattle,WA,US,98105,,
##' "Johnsen, Jill",Blood Works Northwest,Seattle,WA,US,98106,,
##' "Ruuska, Sarah",Blood Works Northwest,Seattle,WA,US,98107,,
##'
##' format_authors(input="banner_authors.csv", affilcol_idx=c(2,3,4,5,6),
##' excludecol_idx=7, affil_numstart=20, out_filename="test")
##' }
##'
##' @author Sarah Nelson, TOPMed DCC, \email{sarahcn@@uw.edu}
##' @rdname format_author
##' @export
format_authors <- function(input, namecol_idx=1, affilcol_idxs, excludecol_idx=NULL, affil_sep=", ", affil_numstart=1, out_filename="authors_formatted", alpha_sort=TRUE, verbose=TRUE){
# required packages
require(readr)
require(tools)
require(dplyr)
require(magrittr)
require(stringr)
require(tidyr)
# check whether input arg is filename or data.frame already in memory
if(is.character(input)){
# read in author list - required to be csv
stopifnot(tools::file_ext(input) %in% "csv")
message("Reading in ", input)
tab <- readr::read_csv(file=input, col_types=cols(.default = "c")) # character col types
} else {
tab <- input
}
if(!is.null(excludecol_idx)){
# identify excluded author names
names(tab)[excludecol_idx] <- "exclude"
nexclude <- sum(!is.na(tab$exclude))
message("Total of ", prettyNum(nexclude, big.mark=","), " excluded authors")
if(verbose){
exclude_names <- paste(tab[!is.na(tab$exclude), namecol_idx])
message("List of excluded authors: ", exclude_names)
}
# remove excluded authors
tab <- tab %>%
dplyr::filter(is.na(exclude))
}
names(tab)[namecol_idx] <- "name"
if(alpha_sort) {
# sort alphabetically
tab.use <- tab %>%
arrange(name)
} else {
tab.use <- tab
}
# combine affiliation elements together into one string
naffil_elems <- length(affilcol_idxs)
affil_colnames <- paste0("affil",1:naffil_elems)
names(tab.use)[affilcol_idxs] <- affil_colnames
# make table of unique affiliations
tab.use$affil_str <- apply(tab.use[, affil_colnames], 1, paste , collapse=affil_sep)
# if any affil elements were missing, remove the ", NA" or "NA, " strings
# to do: figure out how to search and replace both strings at once
tab.use <- tab.use %>%
mutate(affil_str = stringr::str_replace_all(affil_str, ", NA", "")) %>%
mutate(affil_str = stringr::str_replace_all(affil_str, "NA, ", "")) %>%
dplyr::filter(!is.na(name)) # remove any rows w/o authors
# make unique set of affiliations and add number
aff <- tab.use %>%
select(affil_str) %>%
unique() %>%
mutate(number=affil_numstart:((affil_numstart-1) + n())) %>%
mutate(aff_write = paste(number, affil_str, sep = ' - '))
# preserve current order - account for where there are > 1 row per person
tmp <- tab.use %>%
select(name) %>%
distinct() %>%
mutate(srted=1:n())
tab.use$srted <- tmp$srted[match(tab.use$name, tmp$name)]
# add affiliation number to author list
aut <- tab.use %>%
left_join(aff, by="affil_str") %>%
# separate first and last author names
tidyr::separate(name, into=c("last","first"), sep=", ", remove=FALSE) %>%
select(first, last, number, srted) %>%
# combine number for auts w/ mult institutions
group_by(first, last, srted) %>%
# order affil number from least to greatest in the superscript
summarise(number_comb = paste(sort(number), collapse=",")) %>%
mutate(number_sup = stringr::str_c("<sup>", number_comb, "</sup>")) %>%
mutate(aut_final = stringr::str_c(first, " ", last, number_sup, sep=""))
if(alpha_sort){
aut <- aut %>%
arrange(last, first)
} else {
aut <- aut %>%
arrange(srted)
}
# write out authors string
write.table(paste(aut$aut_final, collapse=", "),
file=paste0(out_filename,".html"), row.names=FALSE,
col.names=FALSE, quote=FALSE)
# write out affiliations string
write.table(c("<br /><br />", paste(aff$aff_write, collapse="; ")),
file=paste0(out_filename,".html"), row.names=FALSE,
col.names=FALSE, quote=FALSE, append=TRUE)
message("\nPlease see output file ", paste0(out_filename,".html"),"; the html can be copy/pasted into Microsoft Word, or printed directly to pdf. Both methods should preserve the superscript formatting.\n")
}
@sarahcn

This comment has been minimized.

Copy link
Owner Author

@sarahcn sarahcn commented Dec 22, 2018

Add feature to take input as object read into memory vs. just file name read from disk

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.