/truncated_corr_and_slope.R Secret
Last active
February 17, 2025 16:46
Investigation of Impact of Truncation on Correlation and Estimated Slopes
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(ggplot2) | |
set.seed(213141) | |
x <- rnorm(250, 45, 5) | |
epsilon1 <- rnorm(250, 0, 1) | |
epsilon2 <- rnorm(250, 0, 2) | |
epsilon3 <- rnorm(250, 0, 5) | |
epsilon4 <- rnorm(250, 0, 10) | |
sd_val <- c(1, 2, 5, 10) | |
epsilons <- list(epsilon1, epsilon2, epsilon3, epsilon4) | |
slopes <- c(-5, -2, -1, -0.25, 0, 0.25, 1, 2, 5) | |
y_vals <- vector("list", length(epsilons) * length(slopes)) | |
k <- 1 | |
for (i in 1:length(epsilons)) { | |
print(i) | |
for (j in 1:length(slopes)) { | |
y_vals[[k]] <- 25 + slopes[j] * x + epsilons[[i]] | |
k <- k + 1 | |
print(j) | |
} | |
} | |
i_val <- rep(1:length(epsilons), each = length(slopes)) | |
j_val <- rep(1:length(slopes), times = length(epsilons)) | |
orig_cor <- c() | |
trunc_cor <- c() | |
est_slope <- c() | |
est_slope_trunc <- c() | |
orig_sd_ratio <- c() | |
trunc_sd_ratio <- c() | |
orig_sd_y <- c() | |
trunc_sd_y <- c() | |
orig_sd_x <- c() | |
trunc_sd_x <- c() | |
tails <- which(x < quantile(x, 0.05) | x > quantile(x, 0.95)) | |
x_trunc <- x[-tails] | |
for (i in 1:length(y_vals)) { | |
orig_cor <- c(orig_cor, cor(x, y_vals[[i]])) | |
y_trunc <- y_vals[[i]][-tails] | |
trunc_cor <- c(trunc_cor, cor(x_trunc, y_trunc)) | |
est_slope <- c(est_slope, unname(coef(lm(y_vals[[i]] ~ x))[2])) | |
est_slope_trunc <- c(est_slope_trunc, unname(coef(lm(y_trunc ~ x_trunc))[2])) | |
orig_sd_y <- c(orig_sd_y, sd(y_vals[[i]])) | |
orig_sd_x <- c(orig_sd_x, sd(x)) | |
trunc_sd_y <- c(trunc_sd_y, sd(y_trunc)) | |
trunc_sd_x <- c(trunc_sd_x, sd(x_trunc)) | |
orig_sd_ratio <- c(orig_sd_ratio, sd(y_vals[[i]])/sd(x)) | |
trunc_sd_ratio <- c(trunc_sd_ratio, sd(y_trunc)/sd(x_trunc)) | |
} | |
toP <- cbind.data.frame( | |
epsilon_sd = sd_val[i_val], | |
true_slope = slopes[j_val], | |
orig_cor = orig_cor, | |
trunc_cor = trunc_cor, | |
est_slope = est_slope, | |
est_slope_trunc = est_slope_trunc, | |
orig_sd_ratio = orig_sd_ratio, | |
trunc_sd_ratio = trunc_sd_ratio, | |
orig_sd_y = orig_sd_y, | |
orig_sd_x = orig_sd_x, | |
trunc_sd_y = trunc_sd_y, | |
trunc_sd_x = trunc_sd_x | |
) | |
ggplot(toP, aes(orig_cor, trunc_cor)) + | |
geom_point() + | |
geom_abline(intercept = 0, slope = 1) + | |
geom_vline(xintercept = 0, lty = 2) + | |
theme_minimal() + | |
xlab("original correlation") + | |
ylab("truncated correlation") | |
ggplot(toP, aes(abs(orig_cor), abs(trunc_cor))) + | |
geom_point() + | |
geom_abline(intercept = 0, slope = 1) + | |
theme_minimal() + | |
xlab("|original correlation|") + | |
ylab("|truncated correlation|") | |
ggplot(toP, aes(est_slope, est_slope_trunc)) + | |
geom_point() + | |
geom_abline(intercept = 0, slope = 1) + | |
theme_minimal() + | |
xlab("original estimated slope") + | |
ylab("truncated estimated slope") | |
ggplot(toP, aes(orig_sd_ratio, trunc_sd_ratio)) + | |
geom_point() + | |
geom_abline(intercept = 0, slope = 1) + | |
theme_minimal() + | |
xlab("original ratio of standard deviations (y to x)") + | |
ylab("truncated ratio of standard deviations (y to x)") | |
ggplot(toP, aes(orig_sd_y/trunc_sd_y, orig_sd_x/trunc_sd_x)) + | |
geom_point() + | |
geom_abline(intercept = 0, slope = 1) + | |
theme_minimal() + | |
xlab("original sd of y / truncated sd of y") + | |
ylab("original sd of x / truncated sd of x") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment