Created
March 23, 2019 10:00
-
-
Save saurabhpal97/4c991cec94b15b27d94a5b01cb3d404d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#import required libraries | |
import numpy as np | |
import cv2 as cv | |
import matplotlib.pyplot as plt | |
%matplotlib inline | |
#load the classifiers downloaded | |
face_cascade = cv.CascadeClassifier('haarcascade_frontalface_default.xml') | |
eye_cascade = cv.CascadeClassifier('haarcascade_eye.xml') | |
#read the image and convert to grayscale format | |
img = cv.imread('rotated_face.jpg') | |
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) | |
#calculate coordinates | |
faces = face_cascade.detectMultiScale(gray, 1.1, 4) | |
for (x,y,w,h) in faces: | |
cv.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2) | |
roi_gray = gray[y:y+h, x:x+w] | |
roi_color = img[y:y+h, x:x+w] | |
eyes = eye_cascade.detectMultiScale(roi_gray) | |
#draw bounding boxes around detected features | |
for (ex,ey,ew,eh) in eyes: | |
cv.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2) | |
#plot the image | |
plt.imshow(img) | |
#write image | |
cv2.imwrite('face_detection.jpg',img) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment