Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
Inception ResNet V2 for MRCNN
# -*- coding: utf-8 -*-
from keras.layers import Activation
from keras.layers import AveragePooling2D
from keras.layers import BatchNormalization
from keras.layers import Concatenate
from keras.layers import Conv2D
from keras.layers import Input
from keras.layers import Lambda
from keras.layers import MaxPooling2D
from keras.applications.imagenet_utils import _obtain_input_shape
from keras import backend as K
BASE_WEIGHT_URL = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.7/'
def preprocess_input(x):
"""Preprocesses a numpy array encoding a batch of images.
This function applies the "Inception" preprocessing which converts
the RGB values from [0, 255] to [-1, 1]. Note that this preprocessing
function is different from `imagenet_utils.preprocess_input()`.
# Arguments
x: a 4D numpy array consists of RGB values within [0, 255].
# Returns
Preprocessed array.
"""
x /= 255.
x -= 0.5
x *= 2.
return x
def conv2d_bn(x,
filters,
kernel_size,
strides=1,
padding='same',
activation='relu',
use_bias=False,
name=None):
"""Utility function to apply conv + BN.
# Arguments
x: input tensor.
filters: filters in `Conv2D`.
kernel_size: kernel size as in `Conv2D`.
padding: padding mode in `Conv2D`.
activation: activation in `Conv2D`.
strides: strides in `Conv2D`.
name: name of the ops; will become `name + '_ac'` for the activation
and `name + '_bn'` for the batch norm layer.
# Returns
Output tensor after applying `Conv2D` and `BatchNormalization`.
"""
x = Conv2D(filters,
kernel_size,
strides=strides,
padding=padding,
use_bias=use_bias,
name=name)(x)
if not use_bias:
bn_axis = 1 if K.image_data_format() == 'channels_first' else 3
bn_name = None if name is None else name + '_bn'
x = BatchNormalization(axis=bn_axis, scale=False, name=bn_name)(x)
if activation is not None:
ac_name = None if name is None else name + '_ac'
x = Activation(activation, name=ac_name)(x)
return x
def inception_resnet_block(x, scale, block_type, block_idx, activation='relu'):
"""Adds a Inception-ResNet block.
This function builds 3 types of Inception-ResNet blocks mentioned
in the paper, controlled by the `block_type` argument (which is the
block name used in the official TF-slim implementation):
- Inception-ResNet-A: `block_type='block35'`
- Inception-ResNet-B: `block_type='block17'`
- Inception-ResNet-C: `block_type='block8'`
# Arguments
x: input tensor.
scale: scaling factor to scale the residuals (i.e., the output of
passing `x` through an inception module) before adding them
to the shortcut branch. Let `r` be the output from the residual branch,
the output of this block will be `x + scale * r`.
block_type: `'block35'`, `'block17'` or `'block8'`, determines
the network structure in the residual branch.
block_idx: an `int` used for generating layer names. The Inception-ResNet blocks
are repeated many times in this network. We use `block_idx` to identify
each of the repetitions. For example, the first Inception-ResNet-A block
will have `block_type='block35', block_idx=0`, ane the layer names will have
a common prefix `'block35_0'`.
activation: activation function to use at the end of the block
(see [activations](keras./activations.md)).
When `activation=None`, no activation is applied
(i.e., "linear" activation: `a(x) = x`).
# Returns
Output tensor for the block.
# Raises
ValueError: if `block_type` is not one of `'block35'`,
`'block17'` or `'block8'`.
"""
if block_type == 'block35':
branch_0 = InceptionResNetV2.conv2d_bn(x, 32, 1)
branch_1 = InceptionResNetV2.conv2d_bn(x, 32, 1)
branch_1 = InceptionResNetV2.conv2d_bn(branch_1, 32, 3)
branch_2 = InceptionResNetV2.conv2d_bn(x, 32, 1)
branch_2 = InceptionResNetV2.conv2d_bn(branch_2, 48, 3)
branch_2 = InceptionResNetV2.conv2d_bn(branch_2, 64, 3)
branches = [branch_0, branch_1, branch_2]
elif block_type == 'block17':
branch_0 = InceptionResNetV2.conv2d_bn(x, 192, 1)
branch_1 = InceptionResNetV2.conv2d_bn(x, 128, 1)
branch_1 = InceptionResNetV2.conv2d_bn(branch_1, 160, [1, 7])
branch_1 = InceptionResNetV2.conv2d_bn(branch_1, 192, [7, 1])
branches = [branch_0, branch_1]
elif block_type == 'block8':
branch_0 = InceptionResNetV2.conv2d_bn(x, 192, 1)
branch_1 = InceptionResNetV2.conv2d_bn(x, 192, 1)
branch_1 = InceptionResNetV2.conv2d_bn(branch_1, 224, [1, 3])
branch_1 = InceptionResNetV2.conv2d_bn(branch_1, 256, [3, 1])
branches = [branch_0, branch_1]
else:
raise ValueError('Unknown Inception-ResNet block type. '
'Expects "block35", "block17" or "block8", '
'but got: ' + str(block_type))
block_name = block_type + '_' + str(block_idx)
channel_axis = 1 if K.image_data_format() == 'channels_first' else 3
mixed = Concatenate(axis=channel_axis, name=block_name + '_mixed')(branches)
up = InceptionResNetV2.conv2d_bn(mixed,
K.int_shape(x)[channel_axis],
1,
activation=None,
use_bias=True,
name=block_name + '_conv')
x = Lambda(lambda inputs, scale: inputs[0] + inputs[1] * scale,
output_shape=K.int_shape(x)[1:],
arguments={'scale': scale},
name=block_name)([x, up])
if activation is not None:
x = Activation(activation, name=block_name + '_ac')(x)
return x
def build_inception_resnet_graph(input_image, stage5=False):
"""Instantiates the Inception-ResNet v2 architecture.
Optionally loads weights pre-trained on ImageNet.
Note that when using TensorFlow, for best performance you should
set `"image_data_format": "channels_last"` in your Keras config
at `~/.keras/keras.json`.
The model and the weights are compatible with both TensorFlow and Theano
backends (but not CNTK). The data format convention used by the model is
the one specified in your Keras config file.
Note that the default input image size for this model is 299x299, instead
of 224x224 as in the VGG16 and ResNet models. Also, the input preprocessing
function is different (i.e., do not use `imagenet_utils.preprocess_input()`
with this model. Use `preprocess_input()` defined in this module instead).
# Arguments
include_top: whether to include the fully-connected
layer at the top of the network.
weights: one of `None` (random initialization)
or `'imagenet'` (pre-training on ImageNet).
input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
to use as image input for the model.
input_shape: optional shape tuple, only to be specified
if `include_top` is `False` (otherwise the input shape
has to be `(299, 299, 3)` (with `'channels_last'` data format)
or `(3, 299, 299)` (with `'channels_first'` data format).
It should have exactly 3 inputs channels,
and width and height should be no smaller than 139.
E.g. `(150, 150, 3)` would be one valid value.
pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
- `None` means that the output of the model will be
the 4D tensor output of the last convolutional layer.
- `'avg'` means that global average pooling
will be applied to the output of the
last convolutional layer, and thus
the output of the model will be a 2D tensor.
- `'max'` means that global max pooling will be applied.
classes: optional number of classes to classify images
into, only to be specified if `include_top` is `True`, and
if no `weights` argument is specified.
# Returns
A Keras `Model` instance.
# Raises
ValueError: in case of invalid argument for `weights`,
or invalid input shape.
RuntimeError: If attempting to run this model with an unsupported backend.
"""
# Stem block: 35 x 35 x 192
x = InceptionResNetV2.conv2d_bn(input_image, 32, 3, strides=2, padding='valid')
x = InceptionResNetV2.conv2d_bn(x, 32, 3, padding='valid')
x = InceptionResNetV2.conv2d_bn(x, 64, 3)
x = MaxPooling2D(3, strides=2)(x)
x = InceptionResNetV2.conv2d_bn(x, 80, 1, padding='valid')
C2 = x = InceptionResNetV2.conv2d_bn(x, 192, 3, padding='valid')
x = MaxPooling2D(3, strides=2)(x)
# Mixed 5b (Inception-A block): 35 x 35 x 320
branch_0 = InceptionResNetV2.conv2d_bn(x, 96, 1)
branch_1 = InceptionResNetV2.conv2d_bn(x, 48, 1)
branch_1 = InceptionResNetV2.conv2d_bn(branch_1, 64, 5)
branch_2 = InceptionResNetV2.conv2d_bn(x, 64, 1)
branch_2 = InceptionResNetV2.conv2d_bn(branch_2, 96, 3)
branch_2 = InceptionResNetV2.conv2d_bn(branch_2, 96, 3)
branch_pool = AveragePooling2D(3, strides=1, padding='same')(x)
branch_pool = InceptionResNetV2.conv2d_bn(branch_pool, 64, 1)
branches = [branch_0, branch_1, branch_2, branch_pool]
channel_axis = 1 if K.image_data_format() == 'channels_first' else 3
C3 = x = Concatenate(axis=channel_axis, name='mixed_5b')(branches)
# 10x block35 (Inception-ResNet-A block): 35 x 35 x 320
for block_idx in range(1, 11):
x = InceptionResNetV2.inception_resnet_block(x,
scale=0.17,
block_type='block35',
block_idx=block_idx)
# Mixed 6a (Reduction-A block): 17 x 17 x 1088
branch_0 = InceptionResNetV2.conv2d_bn(x, 384, 3, strides=2, padding='valid')
branch_1 = InceptionResNetV2.conv2d_bn(x, 256, 1)
branch_1 = InceptionResNetV2.conv2d_bn(branch_1, 256, 3)
branch_1 = InceptionResNetV2.conv2d_bn(branch_1, 384, 3, strides=2, padding='valid')
branch_pool = MaxPooling2D(3, strides=2, padding='valid')(x)
branches = [branch_0, branch_1, branch_pool]
x = Concatenate(axis=channel_axis, name='mixed_6a')(branches)
# 20x block17 (Inception-ResNet-B block): 17 x 17 x 1088
for block_idx in range(1, 21):
x = InceptionResNetV2.inception_resnet_block(x,
scale=0.1,
block_type='block17',
block_idx=block_idx)
C4 = x
# Mixed 7a (Reduction-B block): 8 x 8 x 2080
branch_0 = InceptionResNetV2.conv2d_bn(x, 256, 1)
branch_0 = InceptionResNetV2.conv2d_bn(branch_0, 384, 3, strides=2, padding='valid')
branch_1 = InceptionResNetV2.conv2d_bn(x, 256, 1)
branch_1 = InceptionResNetV2.conv2d_bn(branch_1, 288, 3, strides=2, padding='valid')
branch_2 = InceptionResNetV2.conv2d_bn(x, 256, 1)
branch_2 = InceptionResNetV2.conv2d_bn(branch_2, 288, 3)
branch_2 = InceptionResNetV2.conv2d_bn(branch_2, 320, 3, strides=2, padding='valid')
branch_pool = MaxPooling2D(3, strides=2, padding='valid')(x)
branches = [branch_0, branch_1, branch_2, branch_pool]
x = Concatenate(axis=channel_axis, name='mixed_7a')(branches)
# 10x block8 (Inception-ResNet-C block): 8 x 8 x 2080
for block_idx in range(1, 10):
x = InceptionResNetV2.inception_resnet_block(x,
scale=0.2,
block_type='block8',
block_idx=block_idx)
x = InceptionResNetV2.inception_resnet_block(x,
scale=1.,
activation=None,
block_type='block8',
block_idx=10)
# Final convolution block: 8 x 8 x 1536
if stage5:
C5 = x = InceptionResNetV2.conv2d_bn(x, 1536, 1, name='conv_7b')
else:
C5 = None
return [None, C2, C3, C4, C5]
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment