Created
September 17, 2012 12:46
-
-
Save schwarzmx/3737090 to your computer and use it in GitHub Desktop.
LFL Objective Function and Gradient
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Objective Function (log-likelihood), network data, asymmetric graph, i.e. $\Lambda$ is arbitrary and $U=V$: | |
\[ | |
F = \min_U\sum_{i,j \epsilon \mathcal{O}} -\log\frac{e^{U_i^{X_{ij}}\Lambda_{ij}(V_j^{X_{ij}})^T}}{\sum_y e^{U_i^{y}\Lambda_{ij}(V_j^{y})^T}} + \frac{\lambda}{2}||U||^2_F | |
\] | |
Expansion: | |
\[ | |
F = \min_U \sum_{i,j \epsilon \mathcal{O}} - | |
\big[ U_i^{X_{ij}}\Lambda_{ij}(V_j^{X_{ij}})^T - \log \sum_y e^{U_i^{y}\Lambda_{ij}(V_j^{y})^T} | |
\big] + \frac{\lambda}{2}||U||^2_F | |
\] | |
Gradients: | |
\[ | |
\frac{\partial F}{\partial \Lambda_{ij}} = \sum_{i,j \epsilon \mathcal{O}} -(U_i^{X_{ij}})^T V_j^{X_{ij}} + \sum_y (U_i^y)^T V_j^y p(y=X_{ij}|U_i,V_j,\Lambda_{ij}) | |
\] | |
for $U$ if $i=j$: | |
\[ | |
\frac{\partial F}{\partial U_i} = \sum_{i,j \epsilon \mathcal{O}} \big[-(\Lambda_{ij} +\Lambda_{ij}^T) V_j^{X_{ij}} + \sum_y (\Lambda_{ij} +\Lambda_{ij}^T) V_j^y p(y=X_{ij}|U_i,V_j,\Lambda_{ij}) \big] + 2U | |
\] | |
otherwise: | |
\[ | |
\frac{\partial F}{\partial U_i} = \sum_{i,j \epsilon \mathcal{O}} \big[ -\Lambda_{ij} V_j^{X_{ij}} + \sum_y \Lambda_{ij} V_j^y p(y=X_{ij}|U_i,V_j,\Lambda_{ij}) \big] + 2U | |
\] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment