Skip to content

Instantly share code, notes, and snippets.

@sdan
Created February 26, 2019 17:25
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save sdan/72442c4c4948f4f13044702ef744c199 to your computer and use it in GitHub Desktop.
Save sdan/72442c4c4948f4f13044702ef744c199 to your computer and use it in GitHub Desktop.
import numpy as np
import tensorflow as tf
import gym
import time
import spinup.algos.ppo.core as core
from spinup.utils.logx import EpochLogger
from spinup.utils.mpi_tf import MpiAdamOptimizer, sync_all_params, MpiAdadeltaOptimizer, MpiAdagradOptimizer, MpiFtrlOptimizer, MpiGradientDescentOptimizer, MpiMomentumOptimizer, MpiProximalAdagradOptimizer, MpiProximalGradientDescentOptimizer, MpiRMSPropOptimizer, MpiAdaMaxOptimizer, MpiAdamGSOptimizer, MpiAdamWOptimizer, MpiAddSignOptimizer, MpiGGTOptimizer, MpiLARSOptimizer, MpiLazyAdamGSOptimizer, MpiLazyAdamOptimizer, MpiMomentumWOptimizer, MpiNadamOptimizer, MpiPowerSignOptimizer, MpiShampooOptimizer
from spinup.utils.mpi_tools import mpi_fork, mpi_avg, proc_id, mpi_statistics_scalar, num_procs
class PPOBuffer:
"""
A buffer for storing trajectories experienced by a PPO agent interacting
with the environment, and using Generalized Advantage Estimation (GAE-Lambda)
for calculating the advantages of state-action pairs.
"""
def __init__(self, obs_dim, act_dim, size, gamma=0.99, lam=0.95):
self.obs_buf = np.zeros(core.combined_shape(size, obs_dim), dtype=np.float32)
self.act_buf = np.zeros(core.combined_shape(size, act_dim), dtype=np.float32)
self.adv_buf = np.zeros(size, dtype=np.float32)
self.rew_buf = np.zeros(size, dtype=np.float32)
self.ret_buf = np.zeros(size, dtype=np.float32)
self.val_buf = np.zeros(size, dtype=np.float32)
self.logp_buf = np.zeros(size, dtype=np.float32)
self.gamma, self.lam = gamma, lam
self.ptr, self.path_start_idx, self.max_size = 0, 0, size
def store(self, obs, act, rew, val, logp):
"""
Append one timestep of agent-environment interaction to the buffer.
"""
assert self.ptr < self.max_size # buffer has to have room so you can store
self.obs_buf[self.ptr] = obs
self.act_buf[self.ptr] = act
self.rew_buf[self.ptr] = rew
self.val_buf[self.ptr] = val
self.logp_buf[self.ptr] = logp
self.ptr += 1
def finish_path(self, last_val=0):
"""
Call this at the end of a trajectory, or when one gets cut off
by an epoch ending. This looks back in the buffer to where the
trajectory started, and uses rewards and value estimates from
the whole trajectory to compute advantage estimates with GAE-Lambda,
as well as compute the rewards-to-go for each state, to use as
the targets for the value function.
The "last_val" argument should be 0 if the trajectory ended
because the agent reached a terminal state (died), and otherwise
should be V(s_T), the value function estimated for the last state.
This allows us to bootstrap the reward-to-go calculation to account
for timesteps beyond the arbitrary episode horizon (or epoch cutoff).
"""
path_slice = slice(self.path_start_idx, self.ptr)
rews = np.append(self.rew_buf[path_slice], last_val)
vals = np.append(self.val_buf[path_slice], last_val)
# the next two lines implement GAE-Lambda advantage calculation
deltas = rews[:-1] + self.gamma * vals[1:] - vals[:-1]
self.adv_buf[path_slice] = core.discount_cumsum(deltas, self.gamma * self.lam)
# the next line computes rewards-to-go, to be targets for the value function
self.ret_buf[path_slice] = core.discount_cumsum(rews, self.gamma)[:-1]
self.path_start_idx = self.ptr
def get(self):
"""
Call this at the end of an epoch to get all of the data from
the buffer, with advantages appropriately normalized (shifted to have
mean zero and std one). Also, resets some pointers in the buffer.
"""
assert self.ptr == self.max_size # buffer has to be full before you can get
self.ptr, self.path_start_idx = 0, 0
# the next two lines implement the advantage normalization trick
adv_mean, adv_std = mpi_statistics_scalar(self.adv_buf)
self.adv_buf = (self.adv_buf - adv_mean) / adv_std
return [self.obs_buf, self.act_buf, self.adv_buf,
self.ret_buf, self.logp_buf]
"""
Proximal Policy Optimization (by clipping),
with early stopping based on approximate KL
"""
def ppo(env_fn, actor_critic=core.mlp_actor_critic, ac_kwargs=dict(), seed=0,
steps_per_epoch=4000, epochs=50, gamma=0.99, clip_ratio=0.2, pi_lr=3e-4,
vf_lr=1e-3, train_pi_iters=80, train_v_iters=80, lam=0.97, max_ep_len=1000,
target_kl=0.01, optimizer='PARAMETER OPTIMIZER', logger_kwargs=dict(), save_freq=10):
"""
Args:
env_fn : A function which creates a copy of the environment.
The environment must satisfy the OpenAI Gym API.
actor_critic: A function which takes in placeholder symbols
for state, ``x_ph``, and action, ``a_ph``, and returns the main
outputs from the agent's Tensorflow computation graph:
=========== ================ ======================================
Symbol Shape Description
=========== ================ ======================================
``pi`` (batch, act_dim) | Samples actions from policy given
| states.
``logp`` (batch,) | Gives log probability, according to
| the policy, of taking actions ``a_ph``
| in states ``x_ph``.
``logp_pi`` (batch,) | Gives log probability, according to
| the policy, of the action sampled by
| ``pi``.
``v`` (batch,) | Gives the value estimate for states
| in ``x_ph``. (Critical: make sure
| to flatten this!)
=========== ================ ======================================
ac_kwargs (dict): Any kwargs appropriate for the actor_critic
function you provided to PPO.
seed (int): Seed for random number generators.
steps_per_epoch (int): Number of steps of interaction (state-action pairs)
for the agent and the environment in each epoch.
epochs (int): Number of epochs of interaction (equivalent to
number of policy updates) to perform.
gamma (float): Discount factor. (Always between 0 and 1.)
clip_ratio (float): Hyperparameter for clipping in the policy objective.
Roughly: how far can the new policy go from the old policy while
still profiting (improving the objective function)? The new policy
can still go farther than the clip_ratio says, but it doesn't help
on the objective anymore. (Usually small, 0.1 to 0.3.)
pi_lr (float): Learning rate for policy optimizer.
vf_lr (float): Learning rate for value function optimizer.
train_pi_iters (int): Maximum number of gradient descent steps to take
on policy loss per epoch. (Early stopping may cause optimizer
to take fewer than this.)
train_v_iters (int): Number of gradient descent steps to take on
value function per epoch.
lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
close to 1.)
max_ep_len (int): Maximum length of trajectory / episode / rollout.
target_kl (float): Roughly what KL divergence we think is appropriate
between new and old policies after an update. This will get used
for early stopping. (Usually small, 0.01 or 0.05.)
logger_kwargs (dict): Keyword args for EpochLogger.
save_freq (int): How often (in terms of gap between epochs) to save
the current policy and value function.
"""
logger = EpochLogger(**logger_kwargs)
logger.save_config(locals())
seed += 10000 * proc_id()
tf.set_random_seed(seed)
np.random.seed(seed)
env = env_fn()
obs_dim = env.observation_space.shape
act_dim = env.action_space.shape
# Share information about action space with policy architecture
ac_kwargs['action_space'] = env.action_space
# Inputs to computation graph
x_ph, a_ph = core.placeholders_from_spaces(env.observation_space, env.action_space)
adv_ph, ret_ph, logp_old_ph = core.placeholders(None, None, None)
# Main outputs from computation graph
pi, logp, logp_pi, v = actor_critic(x_ph, a_ph, **ac_kwargs)
# Need all placeholders in *this* order later (to zip with data from buffer)
all_phs = [x_ph, a_ph, adv_ph, ret_ph, logp_old_ph]
# Every step, get: action, value, and logprob
get_action_ops = [pi, v, logp_pi]
# Experience buffer
local_steps_per_epoch = int(steps_per_epoch / num_procs())
buf = PPOBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)
# Count variables
var_counts = tuple(core.count_vars(scope) for scope in ['pi', 'v'])
logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n'%var_counts)
# PPO objectives
ratio = tf.exp(logp - logp_old_ph) # pi(a|s) / pi_old(a|s)
min_adv = tf.where(adv_ph>0, (1+clip_ratio)*adv_ph, (1-clip_ratio)*adv_ph)
pi_loss = -tf.reduce_mean(tf.minimum(ratio * adv_ph, min_adv))
v_loss = tf.reduce_mean((ret_ph - v)**2)
# Info (useful to watch during learning)
approx_kl = tf.reduce_mean(logp_old_ph - logp) # a sample estimate for KL-divergence, easy to compute
approx_ent = tf.reduce_mean(-logp) # a sample estimate for entropy, also easy to compute
clipped = tf.logical_or(ratio > (1+clip_ratio), ratio < (1-clip_ratio))
clipfrac = tf.reduce_mean(tf.cast(clipped, tf.float32))
# Optimizers
print("learning rate",pi_lr," ",vf_lr)
# train_pi = MpiAdamOptimizer(learning_rate=pi_lr, rho=0.95,
# epsilon=1e-08,
# use_locking=False,
# name='Adadelta').minimize(pi_loss)
# train_v = MpiAdamOptimizer(learning_rate=vf_lr,rho=0.95,
# epsilon=1e-08,
# use_locking=False,
# name='Adadelta').minimize(v_loss)
if optimizer=="AdamOptimizer":
train_pi = MpiAdamOptimizer(learning_rate=pi_lr,beta1=0.9,
beta2=0.999,
epsilon=1e-08,
use_locking=False,
name='Adam').minimize(pi_loss)
train_v = MpiAdamOptimizer(learning_rate=vf_lr,beta1=0.9,
beta2=0.999,
epsilon=1e-08,
use_locking=False,
name='Adam').minimize(v_loss)
elif optimizer=="AdadeltaOptimizer":
train_pi = MpiAdadeltaOptimizer(learning_rate=pi_lr,rho=0.95,
epsilon=1e-08,
use_locking=False,
name='Adadelta').minimize(pi_loss)
train_v = MpiAdadeltaOptimizer(learning_rate=vf_lr,rho=0.95,
epsilon=1e-08,
use_locking=False,
name='Adadelta').minimize(v_loss)
elif optimizer=="AdagradOptimizer":
train_pi = MpiAdagradOptimizer(learning_rate=pi_lr,initial_accumulator_value=0.1,
use_locking=False,
name='Adagrad').minimize(pi_loss)
train_v = MpiAdagradOptimizer(learning_rate=vf_lr,initial_accumulator_value=0.1,
use_locking=False,
name='Adagrad').minimize(v_loss)
elif optimizer=="AdamOptimizer":
train_pi = MpiAdamOptimizer(learning_rate=pi_lr,beta1=0.9,
beta2=0.999,
epsilon=1e-08,
use_locking=False,
name='Adam').minimize(pi_loss)
train_v = MpiAdamOptimizer(learning_rate=vf_lr,beta1=0.9,
beta2=0.999,
epsilon=1e-08,
use_locking=False,
name='Adam').minimize(v_loss)
elif optimizer=="FtrlOptimizer":
train_pi = MpiFtrlOptimizer(learning_rate=pi_lr, learning_rate_power=-0.5,
initial_accumulator_value=0.1,
l1_regularization_strength=0.0,
l2_regularization_strength=0.0,
use_locking=False,
name='Ftrl',
accum_name=None,
linear_name=None,
l2_shrinkage_regularization_strength=0.0).minimize(pi_loss)
train_v = MpiFtrlOptimizer(learning_rate=vf_lr, learning_rate_power=-0.5,
initial_accumulator_value=0.1,
l1_regularization_strength=0.0,
l2_regularization_strength=0.0,
use_locking=False,
name='Ftrl',
accum_name=None,
linear_name=None,
l2_shrinkage_regularization_strength=0.0).minimize(v_loss)
elif optimizer=="GradientDescentOptimizer":
train_pi = MpiGradientDescentOptimizer(learning_rate=pi_lr, use_locking=False,
name='GradientDescent').minimize(pi_loss)
train_v = MpiGradientDescentOptimizer(learning_rate=vf_lr, use_locking=False,
name='GradientDescent').minimize(v_loss)
elif optimizer=="MomentumOptimizer":
train_pi = MpiMomentumOptimizer(learning_rate=pi_lr,momentum=0.9,
use_locking=False,
name='Momentum',
use_nesterov=False).minimize(pi_loss)
train_v = MpiMomentumOptimizer(learning_rate=vf_lr,momentum=0.9,
use_locking=False,
name='Momentum',
use_nesterov=False).minimize(v_loss)
elif optimizer=="ProximalAdagradOptimizer":
train_pi = MpiProximalAdagradOptimizer(learning_rate=pi_lr, initial_accumulator_value=0.1,
l1_regularization_strength=0.0,
l2_regularization_strength=0.0,
use_locking=False,
name='ProximalAdagrad' ).minimize(pi_loss)
train_v = MpiProximalAdagradOptimizer(learning_rate=vf_lr, initial_accumulator_value=0.1,
l1_regularization_strength=0.0,
l2_regularization_strength=0.0,
use_locking=False,
name='ProximalAdagrad').minimize(v_loss)
elif optimizer=="ProximalGradientDescentOptimizer":
train_pi = MpiProximalGradientDescentOptimizer(learning_rate=pi_lr, l1_regularization_strength=0.0,
l2_regularization_strength=0.0,
use_locking=False,
name='ProximalGradientDescent').minimize(pi_loss)
train_v = MpiProximalGradientDescentOptimizer(learning_rate=vf_lr, l1_regularization_strength=0.0,
l2_regularization_strength=0.0,
use_locking=False,
name='ProximalGradientDescent').minimize(v_loss)
elif optimizer=="RMSPropOptimizer":
train_pi = MpiRMSPropOptimizer(learning_rate=pi_lr,
decay=0.9,
momentum=0.0,
epsilon=1e-10,
use_locking=False,
centered=False,
name='RMSProp').minimize(pi_loss)
train_v = MpiRMSPropOptimizer(learning_rate=vf_lr,
decay=0.9,
momentum=0.01,
epsilon=1e-10,
use_locking=False,
centered=False,
name='RMSProp').minimize(v_loss)
elif optimizer=="AdaMaxOptimizer":
train_pi = MpiAdaMaxOptimizer(learning_rate=pi_lr,
beta1=0.9,
beta2=0.999,
epsilon=1e-08,
use_locking=False,
name='AdaMax' ).minimize(pi_loss)
train_v = MpiAdaMaxOptimizer(learning_rate=vf_lr,
beta1=0.9,
beta2=0.999,
epsilon=1e-08,
use_locking=False,
name='AdaMax' ).minimize(v_loss)
elif optimizer=="AdamGSOptimizer":
train_pi = MpiAdamGSOptimizer(learning_rate=pi_lr,
global_step=0,
beta1=0.9,
beta2=0.999,
epsilon=1e-08,
use_locking=False,
name='Adam' ).minimize(pi_loss)
train_v = MpiAdamGSOptimizer(learning_rate=vf_lr,
global_step=0,
beta1=0.9,
beta2=0.999,
epsilon=1e-08,
use_locking=False,
name='Adam' ).minimize(v_loss)
elif optimizer=="AdamWOptimizer":
train_pi = MpiAdamWOptimizer(learning_rate=pi_lr,
weight_decay=0.000001,
beta1=0.9,
beta2=0.999,
epsilon=1e-08,
use_locking=False,
name='AdamW').minimize(pi_loss)
train_v = MpiAdamWOptimizer(learning_rate=vf_lr,
weight_decay=0.000001,
beta1=0.9,
beta2=0.999,
epsilon=1e-08,
use_locking=False,
name='AdamW').minimize(v_loss)
elif optimizer=="AddSignOptimizer":
train_pi = MpiAddSignOptimizer(learning_rate=pi_lr,
alpha=1.0,
beta=0.9,
sign_decay_fn=None,
use_locking=False,
name='AddSignOptimizer').minimize(pi_loss)
train_v = MpiAddSignOptimizer(learning_rate=vf_lr,
alpha=1.0,
beta=0.9,
sign_decay_fn=None,
use_locking=False,
name='AddSignOptimizer').minimize(v_loss)
elif optimizer=="GGTOptimizer":
train_pi = MpiGGTOptimizer(learning_rate=pi_lr,
beta1=0.9,
use_locking=False,
name='GGT',
window=10,
eps=0.0001,
svd_eps=1e-06,
sigma_eps=0.01).minimize(pi_loss)
train_v = MpiGGTOptimizer(learning_rate=vf_lr,
beta1=0.9,
use_locking=False,
name='GGT',
window=10,
eps=0.0001,
svd_eps=1e-06,
sigma_eps=0.01).minimize(v_loss)
elif optimizer=="LARSOptimizer":
train_pi = MpiLARSOptimizer(learning_rate=pi_lr,
momentum=0.9,
weight_decay=0.0001,
eeta=0.001,
epsilon=0.0,
name='LARSOptimizer',
skip_list=None,
use_nesterov=False).minimize(pi_loss)
train_v = MpiLARSOptimizer(learning_rate=vf_lr,
momentum=0.9,
weight_decay=0.0001,
eeta=0.001,
epsilon=0.0,
name='LARSOptimizer',
skip_list=None,
use_nesterov=False).minimize(v_loss)
elif optimizer=="LazyAdamGSOptimizer":
train_pi = MpiLazyAdamGSOptimizer(global_step=0,
learning_rate=pi_lr,
beta1=0.9,
beta2=0.999,
epsilon=1e-08,
use_locking=False,
name='Adam').minimize(pi_loss)
train_v = MpiLazyAdamGSOptimizer(global_step=0,
learning_rate=vf_lr,
beta1=0.9,
beta2=0.999,
epsilon=1e-08,
use_locking=False,
name='Adam').minimize(v_loss)
elif optimizer=="LazyAdamOptimizer":
train_pi = MpiLazyAdamOptimizer(learning_rate=pi_lr,beta1=0.9,
beta2=0.999,
epsilon=1e-08,
use_locking=False,
name='LazyAdam').minimize(pi_loss)
train_v = MpiLazyAdamOptimizer(learning_rate=vf_lr,beta1=0.9,
beta2=0.999,
epsilon=1e-08,
use_locking=False,
name='LazyAdam').minimize(v_loss)
elif optimizer=="MomentumWOptimizer":
train_pi = MpiMomentumWOptimizer(weight_decay=0.000001,
learning_rate=pi_lr,
momentum=0.01,
use_locking=False,
name='MomentumW',
use_nesterov=False).minimize(pi_loss)
train_v = MpiMomentumWOptimizer(weight_decay=0.000001,
learning_rate=vf_lr,
momentum=0.01,
use_locking=False,
name='MomentumW',
use_nesterov=False).minimize(v_loss)
elif optimizer=="NadamOptimizer":
train_pi = MpiNadamOptimizer(learning_rate=pi_lr,beta1=0.9,
beta2=0.999,
epsilon=1e-08,
use_locking=False,
name='Nadam').minimize(pi_loss)
train_v = MpiNadamOptimizer(learning_rate=vf_lr,beta1=0.9,
beta2=0.999,
epsilon=1e-08,
use_locking=False,
name='Nadam').minimize(v_loss)
elif optimizer=="PowerSignOptimizer":
train_pi = MpiPowerSignOptimizer(learning_rate=pi_lr,base=math.e,
beta=0.9,
sign_decay_fn=None,
use_locking=False,
name='PowerSignOptimizer').minimize(pi_loss)
train_v = MpiPowerSignOptimizer(learning_rate=vf_lr,base=math.e,
beta=0.9,
sign_decay_fn=None,
use_locking=False,
name='PowerSignOptimizer').minimize(v_loss)
elif optimizer=="ShampooOptimizer":
train_pi = MpiShampooOptimizer(global_step=0,
max_matrix_size=768,
gbar_decay=0.0,
gbar_weight=1.0,
mat_gbar_decay=1.0,
mat_gbar_weight=1.0,
learning_rate=pi_lr,
svd_interval=1,
precond_update_interval=1,
epsilon=0.0001,
alpha=0.5,
use_iterative_root=False,
use_locking=False,
name='Shampoo').minimize(pi_loss)
train_v = MpiShampooOptimizer(global_step=0,
max_matrix_size=768,
gbar_decay=0.0,
gbar_weight=1.0,
mat_gbar_decay=1.0,
mat_gbar_weight=1.0,
learning_rate=vf_lr,
svd_interval=1,
precond_update_interval=1,
epsilon=0.0001,
alpha=0.5,
use_iterative_root=False,
use_locking=False,
name='Shampoo').minimize(v_loss)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
# Tensorboard
storDir = logger_kwargs['output_dir']
writDir = storDir+"/board/"
summary_writer = tf.summary.FileWriter(writDir,tf.get_default_graph())
# Sync params across processes
sess.run(sync_all_params())
# Setup model saving
logger.setup_tf_saver(sess, inputs={'x': x_ph}, outputs={'pi': pi, 'v': v})
def update():
inputs = {k:v for k,v in zip(all_phs, buf.get())}
pi_l_old, v_l_old, ent = sess.run([pi_loss, v_loss, approx_ent], feed_dict=inputs)
# Training
for i in range(train_pi_iters):
_, kl = sess.run([train_pi, approx_kl], feed_dict=inputs)
kl = mpi_avg(kl)
if kl > 1.5 * target_kl:
logger.log('Early stopping at step %d due to reaching max kl.'%i)
break
logger.store(StopIter=i)
for _ in range(train_v_iters):
sess.run(train_v, feed_dict=inputs)
# Log changes from update
pi_l_new, v_l_new, kl, cf = sess.run([pi_loss, v_loss, approx_kl, clipfrac], feed_dict=inputs)
logger.store(LossPi=pi_l_old, LossV=v_l_old,
KL=kl, Entropy=ent, ClipFrac=cf,
DeltaLossPi=(pi_l_new - pi_l_old),
DeltaLossV=(v_l_new - v_l_old))
start_time = time.time()
o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0
# Main loop: collect experience in env and update/log each epoch
for epoch in range(epochs):
for t in range(local_steps_per_epoch):
a, v_t, logp_t = sess.run(get_action_ops, feed_dict={x_ph: o.reshape(1,-1)})
# save and log
buf.store(o, a, r, v_t, logp_t)
logger.store(VVals=v_t)
o, r, d, _ = env.step(a[0])
ep_ret += r
ep_len += 1
terminal = d or (ep_len == max_ep_len)
if terminal or (t==local_steps_per_epoch-1):
if not(terminal):
print('Warning: trajectory cut off by epoch at %d steps.'%ep_len)
# if trajectory didn't reach terminal state, bootstrap value target
last_val = r if d else sess.run(v, feed_dict={x_ph: o.reshape(1,-1)})
buf.finish_path(last_val)
if terminal:
# only save EpRet / EpLen if trajectory finished
logger.store(EpRet=ep_ret, EpLen=ep_len)
o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0
# Save model
if (epoch % save_freq == 0) or (epoch == epochs-1):
logger.save_state({'env': env}, None)
# Perform PPO update!
update()
# Update tensorboard
log_perf_board = ['EpRet','EpLen','VVals']
log_loss_board = ['LossPi','LossV','DeltaLossPi','DeltaLossV','Entropy','KL']
log_board = {'Performance': log_perf_board, 'Loss': log_loss_board}
summary = tf.Summary()
for key,value in log_board.items():
for val in value:
mean, std = logger.get_stats(val)
if key=='Performance':
summary.value.add(tag=key+'/Average'+val, simple_value=mean)
summary.value.add(tag=key+'/Std'+val, simple_value=std)
# summary.histogram('perf mean', mean)
# summary.histogram('perf std', std)
else:
summary.value.add(tag=key+'/'+val, simple_value=mean)
# summary.histogram('perf mean', mean)
# summary.histogram('perf std', std)
summary_writer.add_summary(summary, epoch)
summary_writer.flush()
# Log info about epoch
logger.log_tabular('Epoch', epoch)
logger.log_tabular('EpRet', with_min_and_max=True)
logger.log_tabular('EpLen', average_only=True)
logger.log_tabular('VVals', with_min_and_max=True)
logger.log_tabular('TotalEnvInteracts', (epoch+1)*steps_per_epoch)
logger.log_tabular('LossPi', average_only=True)
logger.log_tabular('LossV', average_only=True)
logger.log_tabular('DeltaLossPi', average_only=True)
logger.log_tabular('DeltaLossV', average_only=True)
logger.log_tabular('Entropy', average_only=True)
logger.log_tabular('KL', average_only=True)
logger.log_tabular('ClipFrac', average_only=True)
logger.log_tabular('StopIter', average_only=True)
logger.log_tabular('Time', time.time()-start_time)
logger.dump_tabular()
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--env', type=str, default='HalfCheetah-v2')
parser.add_argument('--hid', type=int, default=64)
parser.add_argument('--l', type=int, default=2)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--seed', '-s', type=int, default=0)
parser.add_argument('--cpu', type=int, default=4)
parser.add_argument('--steps', type=int, default=4000)
parser.add_argument('--epochs', type=int, default=50)
parser.add_argument('--exp_name', type=str, default='ppo')
args = parser.parse_args()
mpi_fork(args.cpu) # run parallel code with mpi
from spinup.utils.run_utils import setup_logger_kwargs
logger_kwargs = setup_logger_kwargs(args.exp_name, args.seed)
ppo(lambda : gym.make(args.env), actor_critic=core.mlp_actor_critic,
ac_kwargs=dict(hidden_sizes=[args.hid]*args.l), gamma=args.gamma,
seed=args.seed, steps_per_epoch=args.steps, epochs=args.epochs,
logger_kwargs=logger_kwargs)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment