Skip to content

@sebastiaanvisser /g0.hs
Created

Embed URL

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
Composing algebras.
{-# LANGUAGE
GADTs
, KindSignatures
, RankNTypes
, TupleSections
, TypeOperators
#-}
module Generics.Morphism where
import Control.Arrow
import Control.Applicative
import Prelude hiding ((>>=), return)
-- The type level fixpoint combinator.
newtype Fix f = In { out :: f (Fix f) }
-- Natural transformations.
type Natural f g = forall a. f a -> g a
data Algebra :: * -> (* -> *) -> * -> * -> * where
Algebra :: (f (p, r) -> r) -> Algebra p f () r
Bind :: Algebra p f i r -> (r -> Algebra p f j q) -> Algebra p f ((i, r), j) q
Natural :: Functor g => Natural f g -> Algebra p g i r -> Algebra p f i r
Compose :: Algebra p f i r -> (r -> Algebra p f j r) -> Algebra p f (i, j) r
instance Show (Algebra p f i r) where
show (Algebra _ ) = "Algebra"
show (Bind a b) = "(Bind " ++ show a ++ " " ++ show (b undefined) ++ ")"
show (Natural _ a) = "(Natural " ++ show a ++ ")"
show (Compose a b) = "(Compose " ++ show a ++ " " ++ show (b undefined) ++ ")"
-------------------------------------------------------------------------------
-- Don't directly expose constructors.
algebra :: (f (p, r) -> r) -> Algebra p f () r
algebra = Algebra
compose :: Algebra p f i r -> (r -> Algebra p f j r) -> Algebra p f (i, j) r
compose = Compose
natural :: Functor g => Natural f g -> Algebra p g i r -> Algebra p f i r
natural = Natural
bind :: Algebra p f i r -> (r -> Algebra p f j q) -> Algebra p f ((i, r), j) q
bind = Bind
-- Construction algberas for paramorphisms and catamorphisms.
type Psi f r = Algebra (Fix f) f () r -- ^ Paramorphisms.
type Phi f r = Algebra () f () r -- ^ Catamorphisms.
psi :: (f (Fix f, r) -> r) -> Psi f r
psi = Algebra
phi :: Functor f => (f b -> b) -> Phi f b
phi f = Algebra (f . fmap snd)
-------------------------------------------------------------------------------
-- Running algebras.
fold :: Functor f => (Fix f -> p) -> Algebra p f i r -> Fix f -> r
fold pack alg =
let f = apply alg
recurse g = f (pack g) (recurse <$> out g)
in snd . recurse
apply :: Functor f => Algebra p f i r -> p -> f (i, r) -> (i, r)
apply (Algebra p) z f = ((), p ((z,) . snd <$> f))
apply (Bind p b) z f = let (i, r) = apply (p ) z (fst . fst <$> f)
(j, q) = apply (b r) z (first snd <$> f)
in (((i, r), j), q)
apply (Natural n p) z f = apply p z (n f)
apply (Compose p b) z f = let (i, r) = apply p z (first fst <$> f)
(j, q) = apply (b r) z (first snd <$> f)
in ((i, j), q)
-- Running paramorphisms and catamorphisms.
para :: Functor f => Algebra (Fix f) f i r -> Fix f -> r
para = fold id
cata :: Functor f => Algebra () f i r -> Fix f -> r
cata = fold (const ())
Just another one!
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Something went wrong with that request. Please try again.