Skip to content

Instantly share code, notes, and snippets.

@sebp
Created April 25, 2020 13:56
Show Gist options
  • Star 1 You must be signed in to star a gist
  • Fork 1 You must be signed in to fork a gist
  • Save sebp/82f54a5480e170fd3c303873b75a07ff to your computer and use it in GitHub Desktop.
Save sebp/82f54a5480e170fd3c303873b75a07ff to your computer and use it in GitHub Desktop.
Print a fitted SurvivalTree from scikit-survival.
"""
This module defines export functions for survival trees.
It is based on the sklearn.tree.export module.
"""
# Authors: Gilles Louppe <g.louppe@gmail.com>
# Peter Prettenhofer <peter.prettenhofer@gmail.com>
# Brian Holt <bdholt1@gmail.com>
# Noel Dawe <noel@dawe.me>
# Satrajit Gosh <satrajit.ghosh@gmail.com>
# Trevor Stephens <trev.stephens@gmail.com>
# Li Li <aiki.nogard@gmail.com>
# Giuseppe Vettigli <vettigli@gmail.com>
# License: BSD 3 clause
import warnings
from numbers import Integral
import numpy as np
from sklearn.tree import _criterion
from sklearn.tree import _tree
from sklearn.tree._reingold_tilford import buchheim, Tree
from sklearn.tree import DecisionTreeClassifier
from sksurv.tree import SurvivalTree
from sksurv.tree._criterion import LogrankCriterion
def _color_brew(n):
"""Generate n colors with equally spaced hues.
Parameters
----------
n : int
The number of colors required.
Returns
-------
color_list : list, length n
List of n tuples of form (R, G, B) being the components of each color.
"""
color_list = []
# Initialize saturation & value; calculate chroma & value shift
s, v = 0.75, 0.9
c = s * v
m = v - c
for h in np.arange(25, 385, 360. / n).astype(int):
# Calculate some intermediate values
h_bar = h / 60.
x = c * (1 - abs((h_bar % 2) - 1))
# Initialize RGB with same hue & chroma as our color
rgb = [(c, x, 0),
(x, c, 0),
(0, c, x),
(0, x, c),
(x, 0, c),
(c, 0, x),
(c, x, 0)]
r, g, b = rgb[int(h_bar)]
# Shift the initial RGB values to match value and store
rgb = [(int(255 * (r + m))),
(int(255 * (g + m))),
(int(255 * (b + m)))]
color_list.append(rgb)
return color_list
def plot_tree(decision_tree, max_depth=None, feature_names=None,
class_names=None, label='all', filled=False,
impurity=True, node_ids=False,
proportion=False, rotate=False, rounded=False,
precision=3, ax=None, fontsize=None):
"""Plot a decision tree.
The sample counts that are shown are weighted with any sample_weights that
might be present.
This function requires matplotlib, and works best with matplotlib >= 1.5.
The visualization is fit automatically to the size of the axis.
Use the ``figsize`` or ``dpi`` arguments of ``plt.figure`` to control
the size of the rendering.
Read more in the :ref:`User Guide <tree>`.
.. versionadded:: 0.21
Parameters
----------
decision_tree : decision tree regressor or classifier
The decision tree to be exported to GraphViz.
max_depth : int, optional (default=None)
The maximum depth of the representation. If None, the tree is fully
generated.
feature_names : list of strings, optional (default=None)
Names of each of the features.
class_names : list of strings, bool or None, optional (default=None)
Names of each of the target classes in ascending numerical order.
Only relevant for classification and not supported for multi-output.
If ``True``, shows a symbolic representation of the class name.
label : {'all', 'root', 'none'}, optional (default='all')
Whether to show informative labels for impurity, etc.
Options include 'all' to show at every node, 'root' to show only at
the top root node, or 'none' to not show at any node.
filled : bool, optional (default=False)
When set to ``True``, paint nodes to indicate majority class for
classification, extremity of values for regression, or purity of node
for multi-output.
impurity : bool, optional (default=True)
When set to ``True``, show the impurity at each node.
node_ids : bool, optional (default=False)
When set to ``True``, show the ID number on each node.
proportion : bool, optional (default=False)
When set to ``True``, change the display of 'values' and/or 'samples'
to be proportions and percentages respectively.
rotate : bool, optional (default=False)
When set to ``True``, orient tree left to right rather than top-down.
rounded : bool, optional (default=False)
When set to ``True``, draw node boxes with rounded corners and use
Helvetica fonts instead of Times-Roman.
precision : int, optional (default=3)
Number of digits of precision for floating point in the values of
impurity, threshold and value attributes of each node.
ax : matplotlib axis, optional (default=None)
Axes to plot to. If None, use current axis. Any previous content
is cleared.
fontsize : int, optional (default=None)
Size of text font. If None, determined automatically to fit figure.
Returns
-------
annotations : list of artists
List containing the artists for the annotation boxes making up the
tree.
Examples
--------
>>> from sklearn.datasets import load_iris
>>> from sklearn import tree
>>> clf = tree.DecisionTreeClassifier(random_state=0)
>>> iris = load_iris()
>>> clf = clf.fit(iris.data, iris.target)
>>> tree.plot_tree(clf) # doctest: +SKIP
[Text(251.5,345.217,'X[3] <= 0.8...
"""
exporter = _MPLTreeExporter(
max_depth=max_depth, feature_names=feature_names,
class_names=class_names, label=label, filled=filled,
impurity=impurity, node_ids=node_ids,
proportion=proportion, rotate=rotate, rounded=rounded,
precision=precision, fontsize=fontsize)
return exporter.export(decision_tree, ax=ax)
class _BaseTreeExporter(object):
def __init__(self, max_depth=None, feature_names=None,
class_names=None, label='all', filled=False,
impurity=True, node_ids=False,
proportion=False, rotate=False, rounded=False,
precision=3, fontsize=None):
self.max_depth = max_depth
self.feature_names = feature_names
self.class_names = class_names
self.label = label
self.filled = filled
self.impurity = impurity
self.node_ids = node_ids
self.proportion = proportion
self.rotate = rotate
self.rounded = rounded
self.precision = precision
self.fontsize = fontsize
def get_color(self, value):
# Find the appropriate color & intensity for a node
if self.colors['bounds'] is None:
# Classification tree
color = list(self.colors['rgb'][np.argmax(value)])
sorted_values = sorted(value, reverse=True)
if len(sorted_values) == 1:
alpha = 0
else:
alpha = ((sorted_values[0] - sorted_values[1])
/ (1 - sorted_values[1]))
else:
# Regression tree or multi-output
color = list(self.colors['rgb'][0])
alpha = ((value - self.colors['bounds'][0]) /
(self.colors['bounds'][1] - self.colors['bounds'][0]))
# unpack numpy scalars
alpha = float(alpha)
# compute the color as alpha against white
color = [int(round(alpha * c + (1 - alpha) * 255, 0)) for c in color]
# Return html color code in #RRGGBB format
return '#%2x%2x%2x' % tuple(color)
def get_fill_color(self, tree, node_id):
# Fetch appropriate color for node
if 'rgb' not in self.colors:
# Initialize colors and bounds if required
self.colors['rgb'] = _color_brew(tree.n_classes[0])
if tree.n_outputs != 1:
# Find max and min impurities for multi-output
self.colors['bounds'] = (np.min(-tree.impurity),
np.max(-tree.impurity))
elif (tree.n_classes[0] == 1 and
len(np.unique(tree.value)) != 1):
# Find max and min values in leaf nodes for regression
self.colors['bounds'] = (np.min(tree.value),
np.max(tree.value))
if tree.n_outputs == 1:
node_val = (tree.value[node_id][0, :] /
tree.weighted_n_node_samples[node_id])
if tree.n_classes[0] == 1:
# Regression
node_val = tree.value[node_id][0, :]
else:
# If multi-output color node by impurity
node_val = -tree.impurity[node_id]
return self.get_color(node_val)
def node_to_str(self, tree, node_id, criterion):
# Generate the node content string
if tree.n_outputs == 1:
value = tree.value[node_id][0, :]
else:
value = tree.value[node_id]
# Should labels be shown?
labels = (self.label == 'root' and node_id == 0) or self.label == 'all'
characters = self.characters
node_string = characters[-1]
# Write node ID
if self.node_ids:
if labels:
node_string += 'node '
node_string += characters[0] + str(node_id) + characters[4]
# Write decision criteria
if tree.children_left[node_id] != _tree.TREE_LEAF:
# Always write node decision criteria, except for leaves
if self.feature_names is not None:
feature = self.feature_names[tree.feature[node_id]]
else:
feature = "X%s%s%s" % (characters[1],
tree.feature[node_id],
characters[2])
node_string += '%s %s %s%s' % (feature,
characters[3],
round(tree.threshold[node_id],
self.precision),
characters[4])
# Write impurity
if self.impurity:
if isinstance(criterion, _criterion.FriedmanMSE):
criterion = "friedman_mse"
elif not isinstance(criterion, str):
criterion = "impurity"
if labels:
node_string += '%s = ' % criterion
node_string += (str(round(tree.impurity[node_id], self.precision))
+ characters[4])
# Write node sample count
if labels:
node_string += 'samples = '
if self.proportion:
percent = (100. * tree.n_node_samples[node_id] /
float(tree.n_node_samples[0]))
node_string += (str(round(percent, 1)) + '%' +
characters[4])
else:
node_string += (str(tree.n_node_samples[node_id]) +
characters[4])
# Write node class distribution / regression value
if self.proportion and tree.n_classes[0] != 1:
# For classification this will show the proportion of samples
value = value / tree.weighted_n_node_samples[node_id]
if labels:
node_string += 'value = '
if criterion == "logrank":
value_text = np.array("", dtype="S32")
elif tree.n_classes[0] == 1:
# Regression
value_text = np.around(value, self.precision)
elif self.proportion:
# Classification
value_text = np.around(value, self.precision)
elif np.all(np.equal(np.mod(value, 1), 0)):
# Classification without floating-point weights
value_text = value.astype(int)
else:
# Classification with floating-point weights
value_text = np.around(value, self.precision)
# Strip whitespace
value_text = str(value_text.astype('S32')).replace("b'", "'")
value_text = value_text.replace("' '", ", ").replace("'", "")
if tree.n_classes[0] == 1 and tree.n_outputs == 1:
value_text = value_text.replace("[", "").replace("]", "")
value_text = value_text.replace("\n ", characters[4])
node_string += value_text + characters[4]
# Write node majority class
if (self.class_names is not None and
tree.n_classes[0] != 1 and
tree.n_outputs == 1):
# Only done for single-output classification trees
if labels:
node_string += 'class = '
if self.class_names is not True:
class_name = self.class_names[np.argmax(value)]
else:
class_name = "y%s%s%s" % (characters[1],
np.argmax(value),
characters[2])
node_string += class_name
# Clean up any trailing newlines
if node_string.endswith(characters[4]):
node_string = node_string[:-len(characters[4])]
return node_string + characters[5]
class _MPLTreeExporter(_BaseTreeExporter):
def __init__(self, max_depth=None, feature_names=None,
class_names=None, label='all', filled=False,
impurity=True, node_ids=False,
proportion=False, rotate=False, rounded=False,
precision=3, fontsize=None):
super().__init__(
max_depth=max_depth, feature_names=feature_names,
class_names=class_names, label=label, filled=filled,
impurity=impurity, node_ids=node_ids, proportion=proportion,
rotate=rotate, rounded=rounded, precision=precision)
self.fontsize = fontsize
# validate
if isinstance(precision, Integral):
if precision < 0:
raise ValueError("'precision' should be greater or equal to 0."
" Got {} instead.".format(precision))
else:
raise ValueError("'precision' should be an integer. Got {}"
" instead.".format(type(precision)))
# The depth of each node for plotting with 'leaf' option
self.ranks = {'leaves': []}
# The colors to render each node with
self.colors = {'bounds': None}
self.characters = ['#', '[', ']', '<=', '\n', '', '']
self.bbox_args = dict(fc='w')
if self.rounded:
self.bbox_args['boxstyle'] = "round"
else:
# matplotlib <1.5 requires explicit boxstyle
self.bbox_args['boxstyle'] = "square"
self.arrow_args = dict(arrowstyle="<-")
def _make_tree(self, node_id, et, depth=0, criterion='entropy'):
# traverses _tree.Tree recursively, builds intermediate
# "_reingold_tilford.Tree" object
name = self.node_to_str(et, node_id, criterion=criterion)
if (et.children_left[node_id] != _tree.TREE_LEAF
and (self.max_depth is None or depth <= self.max_depth)):
children = [self._make_tree(et.children_left[node_id], et,
depth=depth + 1, criterion=criterion),
self._make_tree(et.children_right[node_id], et,
depth=depth + 1, criterion=criterion)]
else:
return Tree(name, node_id)
return Tree(name, node_id, *children)
def export(self, decision_tree, ax=None):
import matplotlib.pyplot as plt
from matplotlib.text import Annotation
if ax is None:
ax = plt.gca()
ax.clear()
ax.set_axis_off()
if isinstance(decision_tree, SurvivalTree):
criterion = "logrank"
else:
criterion = decision_tree.criterion
my_tree = self._make_tree(0, decision_tree.tree_, criterion=criterion)
draw_tree = buchheim(my_tree)
# important to make sure we're still
# inside the axis after drawing the box
# this makes sense because the width of a box
# is about the same as the distance between boxes
max_x, max_y = draw_tree.max_extents() + 1
ax_width = ax.get_window_extent().width
ax_height = ax.get_window_extent().height
scale_x = ax_width / max_x
scale_y = ax_height / max_y
self.recurse(draw_tree, decision_tree.tree_, ax,
scale_x, scale_y, ax_height)
anns = [ann for ann in ax.get_children()
if isinstance(ann, Annotation)]
# update sizes of all bboxes
renderer = ax.figure.canvas.get_renderer()
for ann in anns:
ann.update_bbox_position_size(renderer)
if self.fontsize is None:
# get figure to data transform
# adjust fontsize to avoid overlap
# get max box width and height
try:
extents = [ann.get_bbox_patch().get_window_extent()
for ann in anns]
max_width = max([extent.width for extent in extents])
max_height = max([extent.height for extent in extents])
# width should be around scale_x in axis coordinates
size = anns[0].get_fontsize() * min(scale_x / max_width,
scale_y / max_height)
for ann in anns:
ann.set_fontsize(size)
except AttributeError:
# matplotlib < 1.5
warnings.warn("Automatic scaling of tree plots requires "
"matplotlib 1.5 or higher. Please specify "
"fontsize.")
return anns
def recurse(self, node, tree, ax, scale_x, scale_y, height, depth=0):
# need to copy bbox args because matplotib <1.5 modifies them
kwargs = dict(bbox=self.bbox_args.copy(), ha='center', va='center',
zorder=100 - 10 * depth, xycoords='axes pixels')
if self.fontsize is not None:
kwargs['fontsize'] = self.fontsize
# offset things by .5 to center them in plot
xy = ((node.x + .5) * scale_x, height - (node.y + .5) * scale_y)
if self.max_depth is None or depth <= self.max_depth:
if self.filled:
kwargs['bbox']['fc'] = self.get_fill_color(tree,
node.tree.node_id)
if node.parent is None:
# root
ax.annotate(node.tree.label, xy, **kwargs)
else:
xy_parent = ((node.parent.x + .5) * scale_x,
height - (node.parent.y + .5) * scale_y)
kwargs["arrowprops"] = self.arrow_args
ax.annotate(node.tree.label, xy_parent, xy, **kwargs)
for child in node.children:
self.recurse(child, tree, ax, scale_x, scale_y, height,
depth=depth + 1)
else:
xy_parent = ((node.parent.x + .5) * scale_x,
height - (node.parent.y + .5) * scale_y)
kwargs["arrowprops"] = self.arrow_args
kwargs['bbox']['fc'] = 'grey'
ax.annotate("\n (...) \n", xy_parent, xy, **kwargs)
@Klest94
Copy link

Klest94 commented Oct 12, 2021

Dear Sebastian,
I am trying this patch with a Survival Tree (built with the scikit-survival package). I cannot visualize the logrank statistic in the nodes correctly, nor the estimate of the CHF in the leaves ( see picture).
Similarly when plotting trees for RSF, in this case, the logrank statistics is not visible at all. Any suggestions?

SurvTree_example
,

@sebp
Copy link
Author

sebp commented Oct 12, 2021

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment