-
-
Save sergiospagnuolo/2908577317ac15033aca28bf433d5b10 to your computer and use it in GitHub Desktop.
analise de termos do PL das Fake News
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
suppressMessages(library(tidyverse)) | |
suppressMessages(library(tidytext)) | |
suppressMessages(library(wordcloud2)) | |
suppressMessages(library(lubridate)) | |
library(ngram) | |
d <- read.csv("texto_pl_2630.txt", header = F, sep = "&") | |
######################################################################################################################################################################################### STOPWORDS | |
stopwords_pt <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vRutQtQqbFVYYP8uwytSyewxtxn19smtWWxsoNai9G6uEg6ytF7Z4IVhYZ5rXx4bgN-IYkSnsF8bSAe/pub?gid=1009958428&single=true&output=csv", header = T) | |
bigram_stop <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vRutQtQqbFVYYP8uwytSyewxtxn19smtWWxsoNai9G6uEg6ytF7Z4IVhYZ5rXx4bgN-IYkSnsF8bSAe/pub?gid=58185156&single=true&output=csv", header = T) %>% .$bigram | |
################################# | |
############ GERA OS BIGRAMAS | |
################################# | |
bigrama <- d %>% | |
unnest_tokens(bigram, V1, token = "ngrams", n = 2) %>% | |
separate(bigram, c("word1", "word2"), sep = " ") %>% | |
filter( | |
!word1 %in% stopwords_pt$word, # remove stopwords from both words in bi-gram | |
!word2 %in% stopwords_pt$word, | |
!str_detect(word1, pattern = "[[:digit:]]"), # removes any words with numeric digits | |
!str_detect(word2, pattern = "[[:digit:]]"), | |
!str_detect(word1, pattern = "[[:punct:]]"), # removes any remaining punctuations | |
!str_detect(word2, pattern = "[[:punct:]]"), | |
!str_detect(word1, pattern = "(.)\\1{2,}"), # removes any words with 3 or more repeated letters | |
!str_detect(word2, pattern = "(.)\\1{2,}"), | |
!str_detect(word1, pattern = "\\b(.)\\b"), # removes any remaining single letter words | |
!str_detect(word2, pattern = "\\b(.)\\b") | |
) %>% | |
unite("bigram", c(word1, word2), sep = " ") %>% | |
count(bigram) %>% | |
filter(n >= 2) %>% | |
#slice_max(n, n = 100) %>% | |
#filter(!bigram %in% bigram_stop) %>% | |
mutate(bigram = str_to_upper(bigram)) %>% | |
arrange(desc(n)) %>% | |
rename(freq = n, words = bigram) | |
unigrama <- d %>% | |
unnest_tokens(unigram, V1, token = "ngrams", n = 1) %>% | |
filter( | |
!unigram %in% stopwords_pt$word, # remove stopwords from both words in bi-gram | |
!str_detect(unigram, pattern = "[[:digit:]]"), # removes any words with numeric digits | |
!str_detect(unigram, pattern = "[[:punct:]]"), # removes any remaining punctuations | |
!str_detect(unigram, pattern = "(.)\\1{2,}"), # removes any words with 3 or more repeated letters | |
!str_detect(unigram, pattern = "\\b(.)\\b"), # removes any remaining single letter words | |
) %>% | |
count(unigram) %>% | |
filter(n >= 4) %>% | |
#slice_max(n, n = 100) %>% | |
filter(!unigram %in% stopwords_pt) %>% | |
mutate(unigram = str_to_upper(unigram)) %>% | |
arrange(desc(n)) %>% | |
rename(freq = n, words = unigram) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment