Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
library(tidyverse)
library(clipr)
library(zoo)
bid %>% filter(region_type == "city") %>% distinct(region_slug) %>% count()
bid %>% filter(region_type == "city") %>% distinct(region_slug, population) %>% summarise(total = sum(population))
# BRASIL
brasil <- bid %>%
group_by(data, week_number) %>%
filter(week_number != 46 & region_type == "country" ) %>%
summarise(media = mean((ratio_20 - 1) * 100), mediana = median((ratio_20 - 1) * 100)) %>%
ggplot() + geom_bar(aes(data, media), stat = "identity", position = "dodge")
# BRASIL, apenas cidades
brasil_metro <- bid %>%
group_by(region_name, data, week_number) %>%
filter(week_number != 46 & region_type == "city" ) %>%
summarise(media = mean((ratio_20 - 1) * 100), mediana = median((ratio_20 - 1) * 100)) %>%
ggplot() + geom_bar(aes(data, media), stat = "identity", position = "dodge")
# SAO PAULO, cidade
sao_paulo <- bid %>%
group_by(data, week_number) %>%
filter(week_number != 46 & region_type == "city" & region_name == "São Paulo") %>%
summarise(media = mean((ratio_20 - 1) * 100), mediana = median((ratio_20 - 1) * 100)) %>%
ggplot() + geom_bar(aes(data, media), stat = "identity", position = "dodge")
# SAO PAULO, UF
sp <- bid %>%
group_by(data, week_number) %>%
filter(week_number != 46 & region_type == "state" & region_name == "Sao Paulo") %>%
summarise(media = mean((ratio_20 - 1) * 100), mediana = median((ratio_20 - 1) * 100)) %>%
ggplot() + geom_bar(aes(data, media), stat = "identity", position = "dodge")
# RIO DE JANEIRO, cidade
rio_de_janeiro <- bid %>%
group_by(data, week_number) %>%
filter(week_number != 46 & region_type == "city" & region_name == "Rio de Janeiro") %>%
summarise(media = mean((ratio_20 - 1) * 100), mediana = median((ratio_20 - 1) * 100)) %>%
ggplot() + geom_bar(aes(data, media), stat = "identity", position = "dodge")
# RIO DE JANEIRO, UF
rj <- bid %>%
group_by(data, week_number) %>%
filter(week_number != 46 & region_type == "state" & region_name == "Rio De Janeiro") %>%
summarise(media = mean((ratio_20 - 1) * 100), mediana = median((ratio_20 - 1) * 100)) %>%
ggplot() + geom_bar(aes(data, media), stat = "identity", position = "dodge")
# Belo Horizonte, cidade
bh <- bid %>%
group_by(data, week_number) %>%
filter(week_number != 46 & region_type == "city" & region_name == "Belo Horizonte") %>%
summarise(media = mean((ratio_20 - 1) * 100), mediana = median((ratio_20 - 1) * 100)) %>%
ggplot() + geom_bar(aes(data, media), stat = "identity", position = "dodge")
# Recife, cidade
recife <- bid %>%
group_by(data, week_number) %>%
filter(week_number != 46 & region_type == "city" & region_name == "Recife") %>%
summarise(media = mean((ratio_20 - 1) * 100), mediana = median((ratio_20 - 1) * 100)) %>%
ggplot() + geom_bar(aes(data, media), stat = "identity", position = "dodge")
# Fortaleza, cidade
fortaleza <- bid %>%
group_by(data, week_number) %>%
filter(week_number != 46 & region_type == "city" & region_name == "Fortaleza") %>%
summarise(media = mean((ratio_20 - 1) * 100), mediana = median((ratio_20 - 1) * 100)) %>%
ggplot() + geom_bar(aes(data, media), stat = "identity", position = "dodge")
# Natal, cidade
natal <- bid %>%
group_by(data, week_number) %>%
filter(week_number != 46 & region_type == "city" & region_name == "Natal") %>%
summarise(media = mean((ratio_20 - 1) * 100), mediana = median((ratio_20 - 1) * 100)) %>%
ggplot() + geom_bar(aes(data, media), stat = "identity", position = "dodge")
# Brasília, cidade
salvador <- bid %>%
group_by(data, week_number) %>%
filter(week_number != 46 & region_type == "city" & region_name == "Salvador") %>%
summarise(media = mean((ratio_20 - 1) * 100), mediana = median((ratio_20 - 1) * 100)) %>%
ggplot() + geom_bar(aes(data, media), stat = "identity", position = "dodge")
# Goiania, cidade
goiania <- bid %>%
group_by(data, week_number) %>%
filter(week_number != 46 & region_type == "city" & region_name == "Goiânia") %>%
summarise(media = mean((ratio_20 - 1) * 100), mediana = median((ratio_20 - 1) * 100)) %>%
ggplot() + geom_bar(aes(data, media), stat = "identity", position = "dodge")
# Brasília, cidade
bsb <- bid %>%
group_by(data, week_number) %>%
filter(week_number != 46 & region_type == "city" & region_name == "Brasília") %>%
summarise(media = mean((ratio_20 - 1) * 100), mediana = median((ratio_20 - 1) * 100)) %>%
ggplot() + geom_bar(aes(data, media), stat = "identity", position = "dodge")
# Belém, cidade
belem <- bid %>%
group_by(data, week_number) %>%
filter(week_number != 46 & region_type == "city" & region_name == "Belém") %>%
summarise(media = mean((ratio_20 - 1) * 100), mediana = median((ratio_20 - 1) * 100)) %>%
ggplot() + geom_bar(aes(data, media), stat = "identity", position = "dodge")
# Brasília, cidade
manaus <- bid %>%
group_by(data, week_number) %>%
filter(week_number != 46 & region_type == "city" & region_name == "Manaus") %>%
summarise(media = mean((ratio_20 - 1) * 100), mediana = median((ratio_20 - 1) * 100)) %>%
ggplot() + geom_bar(aes(data, media), stat = "identity", position = "dodge")
# São José dos Campos, cidade
sjc <- bid %>%
group_by(data, week_number) %>%
filter(week_number != 46 & region_type == "city" & region_name == "São José dos Campos") %>%
summarise(media = mean((ratio_20 - 1) * 100), mediana = median((ratio_20 - 1) * 100)) %>%
ggplot() + geom_bar(aes(data, media), stat = "identity", position = "dodge")
# Curitiba, cidade
curitiba <- bid %>%
group_by(data, week_number) %>%
filter(week_number != 46 & region_type == "city" & region_name == "Curitiba") %>%
summarise(media = mean((ratio_20 - 1) * 100), mediana = median((ratio_20 - 1) * 100)) %>%
ggplot() + geom_bar(aes(data, media), stat = "identity", position = "dodge")
library(readr)
library(tidyverse)
# DADOS DE MOBILIDADE BID/WAZE
dia <- read_csv('http://tiny.cc/idb-traffic-daily')
semana <- read_csv('http://tiny.cc/idb-traffic-weekly')
metadata <- read_csv('http://tiny.cc/idb-traffic-metadata')
# agrega datas
bid$data <- as.Date(paste0(2020,"-", bid$max_month,"-", bid$max_day))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment