Skip to content

Instantly share code, notes, and snippets.

@sewera
Created April 23, 2020 23:09
Show Gist options
  • Save sewera/f1cc7a81758ea69564d3cecf28a62b86 to your computer and use it in GitHub Desktop.
Save sewera/f1cc7a81758ea69564d3cecf28a62b86 to your computer and use it in GitHub Desktop.
Dokument w LaTeXu do pracy domowej z Lab 4 z PR
\documentclass[12pt,fleqn]{article}
\usepackage[utf8]{inputenc}
\usepackage[margin=1in]{geometry}
\usepackage[bookmarks]{hyperref}
\usepackage{polski}
\usepackage[polish]{babel}
\usepackage{indentfirst}
\usepackage{graphicx}
\usepackage{float}
\usepackage{amsmath}
\usepackage{amsthm}
\let\lll\undefined
\usepackage{amssymb}
\usepackage{amsfonts}
\usepackage{siunitx}
\usepackage{esint}
\usepackage{multicol}
\usepackage{xcolor}
\usepackage{lmodern}
\usepackage[T1]{fontenc}
\sisetup{
exponent-product = \cdot,
input-product = *,
output-product = \cdot,
quotient-mode = fraction,
per-mode = fraction,
}
\newenvironment{bottompar}{\par\vspace*{\fill}}{\clearpage}
\title{
Podstawy Radiokomunikacji \\
\large Praca domowa – Laboratorium nr 4}
\author{Błażej Sewera}
\date{23 kwietnia 2020}
\begin{document}
\maketitle
\section{Dane}
{\bfseries Wariant 9}
\par Antena 1: $h = 100 \si{\milli\meter}$
\par Antena 2: $h = 153 \si{\milli\meter}$
\section{Rozwiązanie}
\subsection{Antena 1}
\subsubsection{Częstotliwość rezonansowa}
\begin{equation*}
\lambda
= \num{4*100} \si{\milli\meter}
= \SI{4e-1}{\meter}
\end{equation*}
\begin{equation*}
f
= \frac{c}{\lambda}
= \frac{\SI{3e8}{\meter\per\second}}{\SI{4e-1}{\meter}}
= \SI{7.5e8}{\hertz}
= \SI{0.75}{\giga\hertz}
\end{equation*}
\subsubsection{Wyrażenie długości anteny w dł. fali}
\begin{equation*}
\lambda_{1.35}
= \frac{c}{f_{1.35}}
= \frac{\SI{3e8}{\meter\per\second}}{\SI{1.35e9}{\hertz}}
\approx \SI{0.222222}{\meter} = \SI{222.222}{\milli\meter}
\end{equation*}
\begin{equation*}
n
= \frac{h}{\lambda_{1.35}}
= \frac{\SI{100}{\milli\meter}}{\SI{222.222}{\milli\meter}}
\approx 0.45
\end{equation*}
\begin{equation*}
h = 0.45 \cdot \lambda_{1.35}
\end{equation*}
\subsubsection{Charakterystyka kierunkowa}
\begin{equation*}
F(\theta)
= \left|
\frac {
\cos \left(
\frac{k l \cdot \cos\theta}{2}
\right)
- \cos \left(
\frac{k l}{2}
\right)
} {
\sin\theta
}
\right|
\end{equation*}
\begin{equation*}
k = \frac{2\pi}{\lambda_{1.35}}
\end{equation*}
\begin{equation*}
l = 2 \cdot h = 2 \cdot 0.45 \cdot \lambda_{1.35} = 0.9 \cdot \lambda_{1.35}
\end{equation*}
\begin{figure}[H]
\begin{center}
\includegraphics[scale=0.8]{fig/pole_elektryczne_a1.pdf}
\end{center}
\caption{Charakterystyka kierunkowa anteny w płaszczyźnie wektora pola
elektrycznego znormalizowana do wartości maksymalnej}
\end{figure}
\begin{figure}[H]
\begin{center}
\includegraphics[scale=0.8]{fig/pole_magnetyczne_a1.pdf}
\end{center}
\caption{Charakterystyka kierunkowa anteny w płaszczyźnie wektora pola
magnetycznego znormalizowana do wartości maksymalnej}
\end{figure}
\subsection{Antena 2}
\subsubsection{Częstotliwość rezonansowa}
\begin{equation*}
\lambda
= \num{4*153} \si{\milli\meter}
= \SI{6.21e-1}{\meter}
\end{equation*}
\begin{equation*}
f
= \frac{c}{\lambda}
= \frac{\SI{3e8}{\meter\per\second}}{\SI{6.21e-1}{\meter}}
= \SI{4.83e8}{\hertz}
= \SI{0.483}{\giga\hertz}
\end{equation*}
\subsubsection{Wyrażenie długości anteny w dł. fali}
\begin{equation*}
\lambda_{1.35}
= \frac{c}{f_{1.35}}
= \frac{\SI{3e8}{\meter\per\second}}{\SI{1.35e9}{\hertz}}
\approx \SI{0.222222}{\meter} = \SI{222.222}{\milli\meter}
\end{equation*}
\begin{equation*}
n
= \frac{h}{\lambda_{1.35}}
= \frac{\SI{153}{\milli\meter}}{\SI{222.222}{\milli\meter}}
\approx 0.69
\end{equation*}
\begin{equation*}
h = 0.69 \cdot \lambda_{1.35}
\end{equation*}
\subsubsection{Charakterystyka kierunkowa}
\begin{equation*}
F(\theta)
= \left|
\frac {
\cos \left(
\frac{k l \cdot \cos\theta}{2}
\right)
- \cos \left(
\frac{k l}{2}
\right)
} {
\sin\theta
}
\right|
\end{equation*}
\begin{equation*}
k = \frac{2\pi}{\lambda_{1.35}}
\end{equation*}
\begin{equation*}
l = 2 \cdot h = 2 \cdot 0.69 \cdot \lambda_{1.35} = 1.38 \cdot \lambda_{1.35}
\end{equation*}
\begin{figure}[H]
\begin{center}
\includegraphics[scale=0.8]{fig/pole_elektryczne_a2.pdf}
\end{center}
\caption{Charakterystyka kierunkowa anteny w płaszczyźnie wektora pola
elektrycznego znormalizowana do wartości maksymalnej}
\end{figure}
\begin{figure}[H]
\begin{center}
\includegraphics[scale=0.8]{fig/pole_magnetyczne_a2.pdf}
\end{center}
\caption{Charakterystyka kierunkowa anteny w płaszczyźnie wektora pola
magnetycznego znormalizowana do wartości maksymalnej}
\end{figure}
\begin{bottompar}
{\footnotesize \ttfamily Źródła:
\par \href{https://gist.github.com/jazzsewera/00209cff06119590dfc5c63d61de8af0}{Wykresy -- python + matplotlib}
\par \href{https://gist.github.com/jazzsewera/f1cc7a81758ea69564d3cecf28a62b86}{Dokument -- LaTeX}}
\end{bottompar}
\end{document}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment