making final Kaggle March Mania predictions
final_blank <- read_csv("data/kaggle/SampleSubmission.csv") %>% | |
separate(Id, into = c("year", "lower_team", "higher_team"), sep = "_", convert = TRUE, remove = FALSE) %>% | |
dplyr::select(-Pred) | |
final_blank_with_data <- final_blank %>% | |
add_kp_data %>% | |
create_vars_for_prediction %>% | |
mutate(lower_team_court_adv = as.factor("N")) %>% | |
dplyr::select(contains("diff"), lower_team_court_adv, contains("rank")) %>% | |
dplyr::select(-lower_pre_seas_rank_all, -higher_pre_seas_rank_all) | |
levels(final_blank_with_data$lower_team_court_adv) <- c("N", "H", "A") # to make levels match the training set | |
final_preds_1 <- predict(glm_model, final_blank_with_data, type = "prob")[, 2] | |
final_preds_2 <- predict(rf_model, final_blank_with_data, type = "prob")[, 2] | |
final_preds_1 <- read_csv("data/kaggle/SampleSubmission.csv") %>% # re-read to get the 3-part Kaggle unique game code | |
mutate(Pred = final_preds_1) | |
final_preds_2 <- read_csv("data/kaggle/SampleSubmission.csv") %>% # re-read to get the 3-part Kaggle unique game code | |
mutate(Pred = final_preds_2) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment