quick hack at get_fuzzy_dupes() function
library(pacman) | |
p_load(fuzzyjoin, dplyr) | |
# returns clusters of records that almost match | |
get_fuzzy_dupes <- function(x, max_dist = 2){ | |
result <- stringdist_inner_join(x, x, max_dist = max_dist, distance_col = "distance") | |
result <- result[result[[1]] != result[[2]], ] # remove actual 100% accurate duplicates | |
result <- t(apply(result, 1, sort)) # these two lines treat A, B as a duplicate of B, A and remove it. From http://stackoverflow.com/a/9028416 | |
result <- result[!duplicated(result), ] | |
as_data_frame(result) %>% | |
select(instance1 = V2, instance2 = V3, distance = V1) %>% | |
arrange(instance1) %>% | |
assign_clusters | |
} | |
# Assigns near-match duplicates into clusters, for easier cleaning | |
# Helper function called by get_fuzzy_dupes | |
assign_clusters <- function(dat){ | |
# go down rowwise - if either has a match in a previous cluster, assign to that cluster, otherwise new cluster | |
dat$cluster <- numeric(length(nrow(dat))) | |
dat$cluster[1] <- dat$instance1[1] | |
for(i in 2:nrow(dat)){ | |
if(dat[i, "instance1"] %in% c(dat[["instance1"]][1:(i-1)], dat[["instance2"]][1:(i-1)]) | | |
dat[i, "instance2"] %in% c(dat[["instance1"]][1:(i-1)], dat[["instance2"]][1:(i-1)])){ | |
dat$cluster[i] <- dat$cluster[min(which(dat[["instance1"]][i] == dat[["instance1"]][1:(i-1)] | | |
dat[["instance1"]][i] == dat[["instance2"]][1:(i-1)] | | |
dat[["instance2"]][i] == dat[["instance1"]][1:(i-1)] | | |
dat[["instance2"]][i] == dat[["instance2"]][1:(i-1)] | |
)) | |
] | |
} else{ | |
dat$cluster[i] <- dat$instance1[i] | |
} | |
} | |
dat | |
} | |
# Create a 1-vector df to play with | |
dat <- mtcars %>% | |
transmute(cars = row.names(.)) | |
# Examples | |
get_fuzzy_dupes(dat, 2) | |
get_fuzzy_dupes(dat, 1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
This comment has been minimized.
That "late night having fun not gonna comment it" code that will bite me later