Skip to content

Instantly share code, notes, and snippets.

@shabnamrani31
Created March 26, 2018 04:28
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save shabnamrani31/c0d6e98143c9be318b5f63a3948f2c56 to your computer and use it in GitHub Desktop.
Save shabnamrani31/c0d6e98143c9be318b5f63a3948f2c56 to your computer and use it in GitHub Desktop.
MLAssignment3
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 26 03:23:32 2018
@author: Shabnam Rani
"""
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
#Dataset Generation
np.random.seed(0)
X, y = sklearn.datasets.make_moons(200, noise=0.20)
plt.scatter(X[:,0], X[:,1], s=40, c=y, cmap=plt.cm.Spectral)
#Classifier
clf = sklearn.linear_model.LogisticRegressionCV()
clf.fit(X, y)
plot_decision_boundary(lambda x: clf.predict(x))
Exp = len(X)
Dimensions = 2 # no of Dimensions
OutputDimensions = 2 # Dimensions of output layer
epsilon = 0.01 # Alpha or Epsilon
regularizinglambda = 0.01
def calculate_loss(model):
# Forward propagation
W1, b1, W2, b2 = model['W1'], model['b1'], model['W2'], model['b2']
z1 = X.dot(W1) + b1
a1 = np.tanh(z1)
z2 = a1.dot(W2) + b2
exp_scores = np.exp(z2)
probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
# Calculating the loss
corect_logprobs = -np.log(probs[range(Exp), y])
data_loss = np.sum(corect_logprobs)
#summing up the regularizer to lambda
data_loss += regularizinglambda/2 * (np.sum(np.square(W1)) + np.sum(np.square(W2)))
return 1./Exp * data_loss
def predict(model, x):
W1, b1, W2, b2 = model['W1'], model['b1'], model['W2'], model['b2']
# Forward propagation
z1 = x.dot(W1) + b1
a1 = np.tanh(z1)
z2 = a1.dot(W2) + b2
exp_scores = np.exp(z2)
probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
return np.argmax(probs, axis=1)
def Buildingofthemodel(nodesinhiddenLayer, passes=200, loss=False):
# Initialize the parameters to random values. We need to learn these.
np.random.seed(0)
W1 = np.random.randn(Dimensions, nodesinhiddenLayer) / np.sqrt(Dimensions)
b1 = np.zeros((1, nodesinhiddenLayer))
W2 = np.random.randn(nodesinhiddenLayer, OutputDimensions) / np.sqrt(nodesinhiddenLayer)
b2 = np.zeros((1, OutputDimensions))
model = {}
# gd for each batch
for i in xrange(0, passes):
# Forward propagation
z1 = X.dot(W1) + b1
a1 = np.tanh(z1)
z2 = a1.dot(W2) + b2
exp_scores = np.exp(z2)
probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
# Backward propagation
delta3 = probs
delta3[range(Exp), y] -= 1
dW2 = (a1.T).dot(delta3)
db2 = np.sum(delta3, axis=0, keepdims=True)
delta2 = delta3.dot(W2.T) * (1 - np.power(a1, 2))
dW1 = np.dot(X.T, delta2)
db1 = np.sum(delta2, axis=0)
dW2 += regularizinglambda * W2
dW1 += regularizinglambda * W1
#Gd parameter updation
W1 += -epsilon * dW1
b1 += -epsilon * db1
W2 += -epsilon * dW2
b2 += -epsilon * db2
#new parameters to model
model = { 'W1': W1, 'b1': b1, 'W2': W2, 'b2': b2}
if loss and i % 1000 == 0:
print("Loss after iteration %i: %f"%(i,calculate_loss(model)))
return model
plt.figure(figsize=(16, 32))
HiddenlayerDms = [1, 2, 3, 4, 5, 20, 50]
for i, nodesinhiddenLayer in enumerate(HiddenlayerDms):
plt.subplot(5, 2, i+1)
model =Buildingofthemodel(nodesinhiddenLayer)
plot_decision_boundary(lambda x: predict(model, x))
plt.show()
model =Buildingofthemodel(2,loss=True)
plot_decision_boundary(lambda x: predict(model, x))
plt.title("Plotting Decision Boundry")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment