Last active
May 5, 2023 13:48
-
-
Save shahules786/df511832ad7156a186ed5532a5a6a2b2 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
@dataclass | |
class GPTNeoxRMOuptput(ModelOutput): | |
""" | |
Reward Model Output | |
""" | |
logits: torch.FloatTensor = None | |
class GPTNeoXRM(GPTNeoXPreTrainedModel): | |
""" """ | |
def __init__( | |
self, | |
config, | |
): | |
super().__init__(config) | |
self.gpt_neox = GPTNeoXModel(config) | |
self.out_layer = nn.Linear(config.hidden_size, 1) | |
def forward( | |
self, | |
input_ids, | |
attention_mask, | |
**kwargs, | |
): | |
return_dict = ( | |
kwargs.get("return_dict") | |
if kwargs.get("return_dict") is not None | |
else self.config.use_return_dict | |
) | |
outputs = self.gpt_neox( | |
input_ids, | |
attention_mask, | |
return_dict=return_dict, | |
**kwargs, | |
) | |
hidden_states = outputs[0] | |
if attention_mask is None: | |
hidden_states = hidden_states.mean(dim=1) | |
else: | |
hidden_states = (hidden_states * attention_mask.unsqueeze(-1)).sum( | |
dim=1 | |
) / attention_mask.sum(dim=1).unsqueeze(-1) | |
lm_logits = self.out_layer(hidden_states) | |
if not return_dict: | |
return (lm_logits,) + outputs[1:] | |
return GPTNeoxRMOuptput(logits=lm_logits) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment