Prime number calculator used as part of a debugging tutorial on talktotheduck.dev
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import java.math.BigInteger; | |
public class PrimeMainMR { | |
public static int cnt = 0; | |
// this is the RabinMiller test, deterministically correct for n < 341,550,071,728,321 | |
// http://rosettacode.org/wiki/Miller-Rabin_primality_test#Python:_Proved_correct_up_to_large_N | |
public static boolean isPrime(BigInteger n, int precision) { | |
if (n.compareTo(new BigInteger("341550071728321")) >= 0) { | |
return n.isProbablePrime(precision); | |
} | |
int intN = n.intValue(); | |
if (intN == 1 || intN == 4 || intN == 6 || intN == 8) return false; | |
if (intN == 2 || intN == 3 || intN == 5 || intN == 7) return true; | |
int[] primesToTest = getPrimesToTest(n); | |
if (n.equals(new BigInteger("3215031751"))) { | |
return false; | |
} | |
BigInteger d = n.subtract(BigInteger.ONE); | |
BigInteger s = BigInteger.ZERO; | |
while (d.mod(BigInteger.valueOf(2)).equals(BigInteger.ZERO)) { | |
d = d.shiftRight(1); | |
s = s.add(BigInteger.ONE); | |
} | |
for (int a : primesToTest) { | |
if (try_composite(a, d, n, s)) { | |
return false; | |
} | |
} | |
return true; | |
} | |
public static boolean isPrime(BigInteger n) { | |
return isPrime(n, 100); | |
} | |
public static boolean isPrime(int n) { | |
return isPrime(BigInteger.valueOf(n), 100); | |
} | |
public static boolean isPrime(long n) { | |
return isPrime(BigInteger.valueOf(n), 100); | |
} | |
private static boolean try_composite(int a, BigInteger d, BigInteger n, BigInteger s) { | |
BigInteger aB = BigInteger.valueOf(a); | |
if (aB.modPow(d, n).equals(BigInteger.ONE)) { | |
return false; | |
} | |
for (int i = 0; BigInteger.valueOf(i).compareTo(s) < 0; i++) { | |
// if pow(a, 2**i * d, n) == n-1 | |
if (aB.modPow(BigInteger.valueOf(2).pow(i).multiply(d), n).equals(n.subtract(BigInteger.ONE))) { | |
return false; | |
} | |
} | |
return true; | |
} | |
private static int[] getPrimesToTest(BigInteger n) { | |
if (n.compareTo(new BigInteger("3474749660383")) >= 0) { | |
return new int[]{2, 3, 5, 7, 11, 13, 17}; | |
} | |
if (n.compareTo(new BigInteger("2152302898747")) >= 0) { | |
return new int[]{2, 3, 5, 7, 11, 13}; | |
} | |
if (n.compareTo(new BigInteger("118670087467")) >= 0) { | |
return new int[]{2, 3, 5, 7, 11}; | |
} | |
if (n.compareTo(new BigInteger("25326001")) >= 0) { | |
return new int[]{2, 3, 5, 7}; | |
} | |
if (n.compareTo(new BigInteger("1373653")) >= 0) { | |
return new int[]{2, 3, 5}; | |
} | |
return new int[]{2, 3}; | |
} | |
public static void main(String[] args) throws InterruptedException { | |
for (int i = 2; i < Math.pow(10, 9); ++i) { | |
if (isPrime(i)) { | |
cnt++; | |
} | |
Thread.sleep(1); | |
} | |
System.out.println("Total number of primes: " + cnt); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment