Skip to content

Instantly share code, notes, and snippets.

@shamdasani shamdasani/block10.py Secret
Created Aug 5, 2017

Embed
What would you like to do?
import numpy as np
# X = (hours sleeping, hours studying), y = score on test
X = np.array(([2, 9], [1, 5], [3, 6]), dtype=float)
y = np.array(([92], [86], [89]), dtype=float)
# scale units
X = X/np.amax(X, axis=0) # maximum of X array
y = y/100 # max test score is 100
class Neural_Network(object):
def __init__(self):
#parameters
self.inputSize = 2
self.outputSize = 1
self.hiddenSize = 3
#weights
self.W1 = np.random.randn(self.inputSize, self.hiddenSize) # (3x2) weight matrix from input to hidden layer
self.W2 = np.random.randn(self.hiddenSize, self.outputSize) # (3x1) weight matrix from hidden to output layer
def forward(self, X):
#forward propagation through our network
self.z = np.dot(X, self.W1) # dot product of X (input) and first set of 3x2 weights
self.z2 = self.sigmoid(self.z) # activation function
self.z3 = np.dot(self.z2, self.W2) # dot product of hidden layer (z2) and second set of 3x1 weights
o = self.sigmoid(self.z3) # final activation function
return o
def sigmoid(self, s):
# activation function
return 1/(1+np.exp(-s))
NN = Neural_Network()
#defining our output
o = NN.forward(X)
print "Predicted Output: \n" + str(o)
print "Actual Output: \n" + str(y)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.