Skip to content

Instantly share code, notes, and snippets.

@shawnthu
shawnthu / gradient_accumulation.py
Created Jun 25, 2021 — forked from thomwolf/gradient_accumulation.py
PyTorch gradient accumulation training loop
View gradient_accumulation.py
model.zero_grad() # Reset gradients tensors
for i, (inputs, labels) in enumerate(training_set):
predictions = model(inputs) # Forward pass
loss = loss_function(predictions, labels) # Compute loss function
loss = loss / accumulation_steps # Normalize our loss (if averaged)
loss.backward() # Backward pass
if (i+1) % accumulation_steps == 0: # Wait for several backward steps
optimizer.step() # Now we can do an optimizer step
model.zero_grad() # Reset gradients tensors
if (i+1) % evaluation_steps == 0: # Evaluate the model when we...