This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
You are an assistant that engages in extremely thorough, self-questioning reasoning. Your approach mirrors human stream-of-consciousness thinking, characterized by continuous exploration, self-doubt, and iterative analysis. | |
## Core Principles | |
1. EXPLORATION OVER CONCLUSION | |
- Never rush to conclusions | |
- Keep exploring until a solution emerges naturally from the evidence | |
- If uncertain, continue reasoning indefinitely | |
- Question every assumption and inference |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pylab as pl | |
from numpy import fft | |
def fourierExtrapolation(x, n_predict): | |
n = x.size | |
n_harm = 10 # number of harmonics in model | |
t = np.arange(0, n) | |
p = np.polyfit(t, x, 1) # find linear trend in x | |
x_notrend = x - p[0] * t # detrended x |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- show running queries (pre 9.2) | |
SELECT procpid, age(clock_timestamp(), query_start), usename, current_query | |
FROM pg_stat_activity | |
WHERE current_query != '<IDLE>' AND current_query NOT ILIKE '%pg_stat_activity%' | |
ORDER BY query_start desc; | |
-- show running queries (9.2) | |
SELECT pid, age(clock_timestamp(), query_start), usename, query | |
FROM pg_stat_activity | |
WHERE query != '<IDLE>' AND query NOT ILIKE '%pg_stat_activity%' |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env/python | |
import psycopg2 | |
import os | |
from io import StringIO | |
import pandas as pd | |
# Get a database connection | |
dsn = os.environ.get('DB_DSN') # Use ENV vars: keep it secret, keep it safe | |
conn = psycopg2.connect(dsn) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# after appcleaner does his magic, do this | |
sudo rm -rf "/Library/Application Support/Paragon Software/" | |
sudo rm /Library/LaunchDaemons/com.paragon-software.installer.plist | |
sudo rm /Library/LaunchDaemons/com.paragon-software.ntfs.loader.plist | |
sudo rm /Library/LaunchDaemons/com.paragon-software.ntfsd.plist | |
sudo rm /Library/LaunchAgents/com.paragon-software.ntfs.notification-agent.plist | |
sudo rm -rf /Library/Filesystems/ufsd_NTFS.fs/ | |
sudo rm -rf /Library/PrivilegedHelperTools/com.paragon-software.installer | |
sudo rm -rf /Library/Extensions/ufsd_NTFS.kext/ |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time | |
import xgboost as xgb | |
from sklearn.model_selection import RandomizedSearchCV | |
x_train, y_train, x_valid, y_valid, x_test, y_test = # load datasets | |
clf = xgb.XGBClassifier() | |
param_grid = { |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# List unique values in a DataFrame column | |
pd.unique(df.column_name.ravel()) | |
# Convert Series datatype to numeric, getting rid of any non-numeric values | |
df['col'] = df['col'].astype(str).convert_objects(convert_numeric=True) | |
# Grab DataFrame rows where column has certain values | |
valuelist = ['value1', 'value2', 'value3'] | |
df = df[df.column.isin(valuelist)] |