Skip to content

Instantly share code, notes, and snippets.

View shbm's full-sized avatar

Shubham Srivastava shbm

View GitHub Profile
@shbm
shbm / contemplative-llms.txt
Created January 7, 2025 02:47 — forked from Maharshi-Pandya/contemplative-llms.txt
"Contemplative reasoning" response style for LLMs like Claude and GPT-4o
You are an assistant that engages in extremely thorough, self-questioning reasoning. Your approach mirrors human stream-of-consciousness thinking, characterized by continuous exploration, self-doubt, and iterative analysis.
## Core Principles
1. EXPLORATION OVER CONCLUSION
- Never rush to conclusions
- Keep exploring until a solution emerges naturally from the evidence
- If uncertain, continue reasoning indefinitely
- Question every assumption and inference
@shbm
shbm / fourex.py
Created March 12, 2021 18:12 — forked from tartakynov/fourex.py
Fourier Extrapolation in Python
import numpy as np
import pylab as pl
from numpy import fft
def fourierExtrapolation(x, n_predict):
n = x.size
n_harm = 10 # number of harmonics in model
t = np.arange(0, n)
p = np.polyfit(t, x, 1) # find linear trend in x
x_notrend = x - p[0] * t # detrended x
@shbm
shbm / postgres_queries_and_commands.sql
Created March 8, 2021 13:15 — forked from rgreenjr/postgres_queries_and_commands.sql
Useful PostgreSQL Queries and Commands
-- show running queries (pre 9.2)
SELECT procpid, age(clock_timestamp(), query_start), usename, current_query
FROM pg_stat_activity
WHERE current_query != '<IDLE>' AND current_query NOT ILIKE '%pg_stat_activity%'
ORDER BY query_start desc;
-- show running queries (9.2)
SELECT pid, age(clock_timestamp(), query_start), usename, query
FROM pg_stat_activity
WHERE query != '<IDLE>' AND query NOT ILIKE '%pg_stat_activity%'
@shbm
shbm / bulk-insert.py
Created January 11, 2021 11:19 — forked from ellisvalentiner/bulk-insert.py
Recipe for (fast) bulk insert from python Pandas DataFrame to Postgres database
#!/usr/bin/env/python
import psycopg2
import os
from io import StringIO
import pandas as pd
# Get a database connection
dsn = os.environ.get('DB_DSN') # Use ENV vars: keep it secret, keep it safe
conn = psycopg2.connect(dsn)
@shbm
shbm / manual-uninstall-paragon-ntfs.sh
Created July 16, 2019 04:51 — forked from guycalledseven/manual-uninstall-paragon-ntfs.sh
Manually remove Paragon NTFS v15 leftovers MacOS
# after appcleaner does his magic, do this
sudo rm -rf "/Library/Application Support/Paragon Software/"
sudo rm /Library/LaunchDaemons/com.paragon-software.installer.plist
sudo rm /Library/LaunchDaemons/com.paragon-software.ntfs.loader.plist
sudo rm /Library/LaunchDaemons/com.paragon-software.ntfsd.plist
sudo rm /Library/LaunchAgents/com.paragon-software.ntfs.notification-agent.plist
sudo rm -rf /Library/Filesystems/ufsd_NTFS.fs/
sudo rm -rf /Library/PrivilegedHelperTools/com.paragon-software.installer
sudo rm -rf /Library/Extensions/ufsd_NTFS.kext/
@shbm
shbm / xgboost_randomized_search.py
Created July 4, 2019 04:17 — forked from wrwr/xgboost_randomized_search.py
XGBoost hyperparameter search using scikit-learn RandomizedSearchCV
import time
import xgboost as xgb
from sklearn.model_selection import RandomizedSearchCV
x_train, y_train, x_valid, y_valid, x_test, y_test = # load datasets
clf = xgb.XGBClassifier()
param_grid = {
@shbm
shbm / useful_pandas_snippets.py
Created June 6, 2017 06:22 — forked from bsweger/useful_pandas_snippets.md
Useful Pandas Snippets
# List unique values in a DataFrame column
pd.unique(df.column_name.ravel())
# Convert Series datatype to numeric, getting rid of any non-numeric values
df['col'] = df['col'].astype(str).convert_objects(convert_numeric=True)
# Grab DataFrame rows where column has certain values
valuelist = ['value1', 'value2', 'value3']
df = df[df.column.isin(valuelist)]