Create a gist now

Instantly share code, notes, and snippets.

What would you like to do?
plots loss in keras, additionally plots segmentation in image
#https://gist.github.com/stared/dfb4dfaf6d9a8501cd1cc8b8cb806d2e
class PlotLosses(keras.callbacks.Callback):
def __init__(self,imgs):
super(PlotLosses, self).__init__()
self.imgs=imgs
def on_train_begin(self, logs={}):
self.i = 0
self.x = []
self.losses = []
self.val_losses = []
self.fig = plt.figure()
self.logs = []
def draw(self):
preds=model.predict(self.imgs[:1])
plt.imshow(self.imgs[0])
plt.imshow(np.argmax(preds.reshape([224,224,2]),axis=-1),alpha=0.6)
def on_batch_end(self,batch,logs={}):
clear_output(wait=True)
self.draw()
plt.show();
def on_epoch_end(self, epoch, logs={}):
self.logs.append(logs)
self.x.append(self.i)
self.losses.append(logs.get('loss'))
self.val_losses.append(logs.get('val_loss'))
self.i += 1
clear_output(wait=True)
plt.plot(self.x, self.losses, label="loss")
plt.plot(self.x, self.val_losses, label="val_loss")
plt.legend()
plt.show();
#gidi
plot_losses = PlotLosses(imgs[:1])
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment