Skip to content

Instantly share code, notes, and snippets.

@shihyu
Created September 13, 2015 14:44
Show Gist options
  • Save shihyu/9d3e040a6c24d695952d to your computer and use it in GitHub Desktop.
Save shihyu/9d3e040a6c24d695952d to your computer and use it in GitHub Desktop.
/* DHT library
MIT license
written by Adafruit Industries
*/
#include "DHT.h"
DHT::DHT(uint8_t pin, uint8_t type, uint8_t count) {
_pin = pin;
_type = type;
_firstreading = true;
_bit = digitalPinToBitMask(pin);
_port = digitalPinToPort(pin);
_maxcycles = microsecondsToClockCycles(1000); // 1 millisecond timeout for
// reading pulses from DHT sensor.
// Note that count is now ignored as the DHT reading algorithm adjusts itself
// basd on the speed of the processor.
}
void DHT::begin(void) {
// set up the pins!
pinMode(_pin, INPUT);
digitalWrite(_pin, HIGH);
_lastreadtime = 0;
DEBUG_PRINT("Max clock cycles: "); DEBUG_PRINTLN(_maxcycles, DEC);
}
//boolean S == Scale. True == Fahrenheit; False == Celcius
float DHT::readTemperature(bool S) {
float f = NAN;
if (read()) {
switch (_type) {
case DHT11:
f = data[2];
if(S) {
f = convertCtoF(f);
}
break;
case DHT22:
case DHT21:
f = data[2] & 0x7F;
f *= 256;
f += data[3];
f /= 10;
if (data[2] & 0x80) {
f *= -1;
}
if(S) {
f = convertCtoF(f);
}
break;
}
}
return f;
}
float DHT::convertCtoF(float c) {
return c * 9 / 5 + 32;
}
float DHT::convertFtoC(float f) {
return (f - 32) * 5 / 9;
}
float DHT::readHumidity(void) {
float f = NAN;
if (read()) {
switch (_type) {
case DHT11:
f = data[0];
break;
case DHT22:
case DHT21:
f = data[0];
f *= 256;
f += data[1];
f /= 10;
break;
}
}
return f;
}
//boolean isFahrenheit: True == Fahrenheit; False == Celcius
float DHT::computeHeatIndex(float temperature, float percentHumidity, bool isFahrenheit) {
// Adapted from equation at: https://github.com/adafruit/DHT-sensor-library/issues/9 and
// Wikipedia: http://en.wikipedia.org/wiki/Heat_index
if (!isFahrenheit) {
// Celsius heat index calculation.
return -8.784695 +
1.61139411 * temperature +
2.338549 * percentHumidity +
-0.14611605 * temperature*percentHumidity +
-0.01230809 * pow(temperature, 2) +
-0.01642482 * pow(percentHumidity, 2) +
0.00221173 * pow(temperature, 2) * percentHumidity +
0.00072546 * temperature*pow(percentHumidity, 2) +
-0.00000358 * pow(temperature, 2) * pow(percentHumidity, 2);
}
else {
// Fahrenheit heat index calculation.
return -42.379 +
2.04901523 * temperature +
10.14333127 * percentHumidity +
-0.22475541 * temperature*percentHumidity +
-0.00683783 * pow(temperature, 2) +
-0.05481717 * pow(percentHumidity, 2) +
0.00122874 * pow(temperature, 2) * percentHumidity +
0.00085282 * temperature*pow(percentHumidity, 2) +
-0.00000199 * pow(temperature, 2) * pow(percentHumidity, 2);
}
}
boolean DHT::read(void) {
// Check if sensor was read less than two seconds ago and return early
// to use last reading.
uint32_t currenttime = millis();
if (currenttime < _lastreadtime) {
// ie there was a rollover
_lastreadtime = 0;
}
if (!_firstreading && ((currenttime - _lastreadtime) < 2000)) {
return _lastresult; // return last correct measurement
}
_firstreading = false;
_lastreadtime = millis();
// Reset 40 bits of received data to zero.
data[0] = data[1] = data[2] = data[3] = data[4] = 0;
// Send start signal. See DHT datasheet for full signal diagram:
// http://www.adafruit.com/datasheets/Digital%20humidity%20and%20temperature%20sensor%20AM2302.pdf
// Go into high impedence state to let pull-up raise data line level and
// start the reading process.
digitalWrite(_pin, HIGH);
delay(250);
// First set data line low for 20 milliseconds.
pinMode(_pin, OUTPUT);
digitalWrite(_pin, LOW);
delay(20);
uint32_t cycles[80];
{
// Turn off interrupts temporarily because the next sections are timing critical
// and we don't want any interruptions.
InterruptLock lock;
// End the start signal by setting data line high for 40 microseconds.
digitalWrite(_pin, HIGH);
delayMicroseconds(40);
// Now start reading the data line to get the value from the DHT sensor.
pinMode(_pin, INPUT);
delayMicroseconds(10); // Delay a bit to let sensor pull data line low.
// First expect a low signal for ~80 microseconds followed by a high signal
// for ~80 microseconds again.
if (expectPulse(LOW) == 0) {
DEBUG_PRINTLN(F("Timeout waiting for start signal low pulse."));
_lastresult = false;
return _lastresult;
}
if (expectPulse(HIGH) == 0) {
DEBUG_PRINTLN(F("Timeout waiting for start signal high pulse."));
_lastresult = false;
return _lastresult;
}
// Now read the 40 bits sent by the sensor. Each bit is sent as a 50
// microsecond low pulse followed by a variable length high pulse. If the
// high pulse is ~28 microseconds then it's a 0 and if it's ~70 microseconds
// then it's a 1. We measure the cycle count of the initial 50us low pulse
// and use that to compare to the cycle count of the high pulse to determine
// if the bit is a 0 (high state cycle count < low state cycle count), or a
// 1 (high state cycle count > low state cycle count). Note that for speed all
// the pulses are read into a array and then examined in a later step.
for (int i=0; i<80; i+=2) {
cycles[i] = expectPulse(LOW);
cycles[i+1] = expectPulse(HIGH);
}
} // Timing critical code is now complete.
// Inspect pulses and determine which ones are 0 (high state cycle count < low
// state cycle count), or 1 (high state cycle count > low state cycle count).
for (int i=0; i<40; ++i) {
uint32_t lowCycles = cycles[2*i];
uint32_t highCycles = cycles[2*i+1];
if ((lowCycles == 0) || (highCycles == 0)) {
DEBUG_PRINTLN(F("Timeout waiting for pulse."));
_lastresult = false;
return _lastresult;
}
data[i/8] <<= 1;
// Now compare the low and high cycle times to see if the bit is a 0 or 1.
if (highCycles > lowCycles) {
// High cycles are greater than 50us low cycle count, must be a 1.
data[i/8] |= 1;
}
// Else high cycles are less than (or equal to, a weird case) the 50us low
// cycle count so this must be a zero. Nothing needs to be changed in the
// stored data.
}
DEBUG_PRINTLN(F("Received:"));
DEBUG_PRINT(data[0], HEX); DEBUG_PRINT(F(", "));
DEBUG_PRINT(data[1], HEX); DEBUG_PRINT(F(", "));
DEBUG_PRINT(data[2], HEX); DEBUG_PRINT(F(", "));
DEBUG_PRINT(data[3], HEX); DEBUG_PRINT(F(", "));
DEBUG_PRINT(data[4], HEX); DEBUG_PRINT(F(" =? "));
DEBUG_PRINTLN((data[0] + data[1] + data[2] + data[3]) & 0xFF, HEX);
// Check we read 40 bits and that the checksum matches.
if (data[4] == ((data[0] + data[1] + data[2] + data[3]) & 0xFF)) {
_lastresult = true;
return _lastresult;
}
else {
DEBUG_PRINTLN(F("Checksum failure!"));
_lastresult = false;
return _lastresult;
}
}
// Expect the signal line to be at the specified level for a period of time and
// return a count of loop cycles spent at that level (this cycle count can be
// used to compare the relative time of two pulses). If more than a millisecond
// ellapses without the level changing then the call fails with a 0 response.
// This is adapted from Arduino's pulseInLong function (which is only available
// in the very latest IDE versions):
// https://github.com/arduino/Arduino/blob/master/hardware/arduino/avr/cores/arduino/wiring_pulse.c
uint32_t DHT::expectPulse(bool level) {
uint32_t count = 0;
// On AVR platforms use direct GPIO port access as it's much faster and better
// for catching pulses that are 10's of microseconds in length:
#ifdef __AVR
uint8_t portState = level ? _bit : 0;
while ((*portInputRegister(_port) & _bit) == portState) {
if (count++ >= _maxcycles) {
return 0; // Exceeded timeout, fail.
}
}
// Otherwise fall back to using digitalRead (this seems to be necessary on ESP8266
// right now, perhaps bugs in direct port access functions?).
#else
while (digitalRead(_pin) == level) {
if (count++ >= _maxcycles) {
return 0; // Exceeded timeout, fail.
}
}
#endif
return count;
}
/* DHT library
MIT license
written by Adafruit Industries
*/
#ifndef DHT_H
#define DHT_H
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
// Uncomment to enable printing out nice debug messages.
//#define DHT_DEBUG
// Define where debug output will be printed.
#define DEBUG_PRINTER Serial
// Setup debug printing macros.
#ifdef DHT_DEBUG
#define DEBUG_PRINT(...) { DEBUG_PRINTER.print(__VA_ARGS__); }
#define DEBUG_PRINTLN(...) { DEBUG_PRINTER.println(__VA_ARGS__); }
#else
#define DEBUG_PRINT(...) {}
#define DEBUG_PRINTLN(...) {}
#endif
// Define types of sensors.
#define DHT11 11
#define DHT22 22
#define DHT21 21
#define AM2301 21
class DHT {
public:
DHT(uint8_t pin, uint8_t type, uint8_t count=6);
void begin(void);
float readTemperature(bool S=false);
float convertCtoF(float);
float convertFtoC(float);
float computeHeatIndex(float temperature, float percentHumidity, bool isFahrenheit=true);
float readHumidity(void);
boolean read(void);
private:
uint8_t data[6];
uint8_t _pin, _type, _bit, _port;
uint32_t _lastreadtime, _maxcycles;
bool _firstreading;
bool _lastresult;
uint32_t expectPulse(bool level);
};
class InterruptLock {
public:
InterruptLock() {
noInterrupts();
}
~InterruptLock() {
interrupts();
}
};
#endif
#include <SoftwareSerial.h>
#include "./DHT.h"
#define DEBUG
#define _ledpin 13
SoftwareSerial esp8266(10, 11); // RX, TX
//*-- DHT11
#define _dhtpin 8
#define _dhttype DHT11
DHT dht11( _dhtpin, _dhttype );
uint8_t dhtbuf[2];
String SSID = "";
String PASS = "";
#define IP "184.106.153.149" // ThingSpeak IP Address: 184.106.153.149
// 使用 GET 傳送資料的格式
// GET /update?key=[THINGSPEAK_KEY]&field1=[data 1]&filed2=[data 2]...;
String GET = "GET /update?key=Q7WJSQJAS2KZMR2O";
void setup()
{
// Open serial communications and wait for port to open:
esp8266.begin(115200);
esp8266.setTimeout(5000);
Serial.begin(115200); //can't be faster than 19200 for softserial
Serial.println("ESP8266 Demo");
//test if the module is ready
esp8266.println("AT+RST");
delay(1000);
if (esp8266.find("ready")) {
Serial.println("Module is ready");
} else {
Serial.println("Module have no response.");
while (1);
}
delay(1000);
//connect to the wifi
boolean connected = false;
for (int i = 0; i < 5; i++) {
if (connectWiFi()) {
connected = true;
break;
}
}
if (!connected) {
while (1);
}
delay(5000);
//print the ip addr
/*esp8266.println("AT+CIFSR");
Serial.println("ip address:");
while (esp8266.available())
Serial.write(esp8266.read());*/
//set the single connection mode
esp8266.println("AT+CIPMUX=0");
// DHT11
dht11.begin();
pinMode( _ledpin, OUTPUT );
digitalWrite( _ledpin, LOW );
}
void sendDebug(String cmd)
{
Serial.print("SEND: ");
Serial.println(cmd);
esp8266.println(cmd);
}
void loop()
{
dhtbuf[0] = dht11.readHumidity();
dhtbuf[1] = dht11.readTemperature();
// 確認取回的溫溼度數據可用
if (isnan(dhtbuf[0]) || isnan(dhtbuf[1])) {
Serial.println("Failed to read form DHT11");
} else {
digitalWrite(_ledpin, HIGH);
char buf[3];
String HH, TT;
buf[0] = 0x30 + dhtbuf[1] / 10;
buf[1] = 0x30 + dhtbuf[1] % 10;
TT = (String(buf)).substring(0, 2);
buf[0] = 0x30 + dhtbuf[0] / 10;
buf[1] = 0x30 + dhtbuf[0] % 10;
HH = (String(buf)).substring(0, 2);
updateDHT11(TT, HH);
#ifdef DEBUG
Serial.print("Humidity: ");
Serial.print(HH);
Serial.print(" %\t");
Serial.print("Temperature: ");
Serial.print(TT);
Serial.println(" *C\t");
#endif
digitalWrite(_ledpin, LOW);
}
delay(6000); // 60 second
}
void updateDHT11(String T, String H)
{
// 設定 ESP8266 作為 Client 端
String cmd = "AT+CIPSTART=\"TCP\",\"";
cmd += IP;
cmd += "\",80";
sendDebug(cmd);
delay(2000);
if (esp8266.find("Error")) {
Serial.print("RECEIVED: Error\nExit1");
return;
}
cmd = GET + "&field1=" + T + "&field2=" + H + "\r\n";
esp8266.print("AT+CIPSEND=");
esp8266.println(cmd.length());
if (esp8266.find(">")) {
Serial.print(">");
Serial.print(cmd);
esp8266.print(cmd);
} else {
sendDebug("AT+CIPCLOSE");
}
if (esp8266.find("OK")) {
Serial.println("RECEIVED: OK");
} else {
Serial.println("RECEIVED: Error\nExit2");
}
}
boolean connectWiFi()
{
esp8266.println("AT+CWMODE=1");
String cmd = "AT+CWJAP=\"";
cmd += SSID;
cmd += "\",\"";
cmd += PASS;
cmd += "\"";
Serial.println(cmd);
esp8266.println(cmd);
delay(2000);
if (esp8266.find("OK")) {
Serial.println("OK, Connected to WiFi.");
return true;
} else {
Serial.println("Can not connect to the WiFi.");
return false;
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment