Skip to content

Instantly share code, notes, and snippets.

View shreyash05's full-sized avatar

Shreyash Gade shreyash05

  • Pune
View GitHub Profile
@shreyash05
shreyash05 / PY0101EN-1-1-Types.ipynb
Created December 31, 2019 08:53
Created on Cognitive Class Labs
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@shreyash05
shreyash05 / PY0101EN-1-1-Types.ipynb
Created December 31, 2019 08:54
Created on Cognitive Class Labs
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
import pandas as pd
import boto3
def group_response():
group = []
client = boto3.client('cognito-idp','us-east-2')
response = client.list_groups(UserPoolId="us-east-2_FRhf7xm7F")
while(response["NextToken"]!=""):
response = client.list_groups(UserPoolId="us-east-2_FRhf7xm7F",NextToken=response['NextToken'])
group.append(response['Groups'])
import pandas as pd
import boto3
import sys
import botocore
import botocore.exceptions
def group_response():
group = []
client = boto3.client('cognito-idp','us-east-2')
response = client.list_groups(UserPoolId="us-east-2_FRhf7xm7F")
import pandas as pd
import boto3
import sys
import botocore
import botocore.exceptions
##########################################################################################################################
def group_response():
group = []
client = boto3.client('cognito-idp','us-east-2')
response = client.list_groups(UserPoolId="us-east-2_FRhf7xm7F")
import pandas as pd
import boto3
import sys
import botocore
import botocore.exceptions
##########################################################################################################################
def group_response():
group = []
client = boto3.client('cognito-idp','us-east-2')
response = client.list_groups(UserPoolId="us-east-2_FRhf7xm7F")
import spacy
from spacy import displacy
def find_subject_sentence(str):
nlp = spacy.load('en_core_web_sm',disable=['ner','textcat'])
text = str
doc = nlp(text)
displacy.render(doc, style='dep',jupyter=True)
for token in doc:
import spacy
from spacy import displacy
def find_subject_sentence(str):
nlp = spacy.load('en_core_web_sm',disable=['ner','textcat'])
text = str
doc = nlp(text)
displacy.render(doc, style='dep',jupyter=True)
sub = '\0'
for token in doc:
# extract subject
from sklearn.feature_extraction.text import TfidfVectorizer
import numpy as np
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
def find_keyword_sentence(str):
icnt = 0
keyword = ''
for element in str:
if element == ' ':
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from statistics import *
class AdvertisementAgency:
def __init__(self):
self.advertisement_dataset = pd.read_csv("Advertising.csv")
self.x_axis_values = self.advertisement_dataset.TV
self.y_axis_values = self.advertisement_dataset.sales
self.mean_x = mean(self.x_axis_values)