Skip to content

Instantly share code, notes, and snippets.

@shriphani
Last active December 4, 2016 15:12
Show Gist options
  • Save shriphani/d1c2a1ea6e35aeb2fa51 to your computer and use it in GitHub Desktop.
Save shriphani/d1c2a1ea6e35aeb2fa51 to your computer and use it in GitHub Desktop.
Caffe LFW Training
//
// This script converts the lfw dataset to the leveldb format used
// by caffe to train siamese network.
// Usage:
// convert_lfw_data input_image_file input_label_file output_db_file
#include <fstream> // NOLINT(readability/streams)
#include <string>
#include "glog/logging.h"
#include "google/protobuf/text_format.h"
#include "leveldb/db.h"
#include "stdint.h"
#include "caffe/proto/caffe.pb.h"
#include "caffe/util/math_functions.hpp"
using namespace std;
void read_image(std::ifstream* image_file, std::ifstream* label_file,
uint32_t index, uint32_t rows, uint32_t cols,
char* pixels, char* label) {
image_file->seekg(index * rows * cols + 12);
image_file->read(pixels, rows * cols);
image_file->read(pixels + (rows * cols), rows * cols);
label_file->seekg(index + 8);
label_file->read(label, 1);
}
void convert_dataset(const char* image_filename, const char* label_filename,
const char* db_filename) {
// Open files
std::ifstream image_file(image_filename, std::ios::in | std::ios::binary);
std::ifstream label_file(label_filename, std::ios::in | std::ios::binary);
CHECK(image_file) << "Unable to open file " << image_filename;
CHECK(label_file) << "Unable to open file " << label_filename;
// Read the magic and the meta data
int32_t num_items;
int32_t num_labels;
uint32_t rows;
uint32_t cols;
image_file.read(reinterpret_cast<char*>(&num_items), 4);
label_file.read(reinterpret_cast<char*>(&num_labels), 4);
CHECK_EQ(num_items, num_labels);
image_file.read(reinterpret_cast<char*>(&rows), 4);
image_file.read(reinterpret_cast<char*>(&cols), 4);
cout << num_items << ", " << num_labels << endl;
cout << rows << ", " << cols << endl;
// Open leveldb
leveldb::DB* db;
leveldb::Options options;
options.create_if_missing = true;
options.error_if_exists = true;
leveldb::Status status = leveldb::DB::Open(
options, db_filename, &db);
CHECK(status.ok()) << "Failed to open leveldb " << db_filename
<< ". Is it already existing?";
char label_i;
char* pixels = new char[2 * rows * cols];
const int kMaxKeyLength = 10;
char key[kMaxKeyLength];
std::string value;
caffe::Datum datum;
datum.set_channels(2); // one channel for each image in the pair
datum.set_height(rows);
datum.set_width(cols);
LOG(INFO) << "A total of " << num_items << " items.";
LOG(INFO) << "Rows: " << rows << " Cols: " << cols;
for (int itemid = 0; itemid < num_items; ++itemid) {
read_image( &image_file,
&label_file,
itemid,
rows,
cols,
pixels,
&label_i );
datum.set_data(pixels, 2*rows*cols);
datum.set_label(label_i);
datum.SerializeToString(&value);
snprintf(key, kMaxKeyLength, "%08d", itemid);
db->Put(leveldb::WriteOptions(), std::string(key), value);
}
delete db;
delete pixels;
}
int main(int argc, char** argv) {
if (argc != 4) {
printf("This script converts the MNIST dataset to the leveldb format used\n"
"by caffe to train a siamese network.\n"
"Usage:\n"
" convert_mnist_data input_image_file input_label_file "
"output_db_file\n"
"The MNIST dataset could be downloaded at\n"
" http://yann.lecun.com/exdb/mnist/\n"
"You should gunzip them after downloading.\n");
} else {
google::InitGoogleLogging(argv[0]);
convert_dataset(argv[1], argv[2], argv[3]);
}
return 0;
}
# The train/test net protocol buffer definition
net: "examples/lfw_siamese/lfw_siamese_train_test.prototxt"
# test_iter specifies how many forward passes the test should carry out.
# In the case of lfw_01, we have test batch size 100 and 6 test iterations,
# covering the full 600 testing images.
test_iter: 6
# Carry out testing every 500 training iterations.
test_interval: 500
# The base learning rate, momentum and the weight decay of the network.
base_lr: 0.001
momentum: 0.9
weight_decay: 0.0000
# The learning rate policy
lr_policy: "inv"
gamma: 0.0001
power: 0.75
# Display every 100 iterations
display: 100
# The maximum number of iterations
max_iter: 50000
# snapshot intermediate results
snapshot: 5000
snapshot_prefix: "examples/siamese/mnist_siamese"
# solver mode: CPU or GPU
solver_mode: GPU
name: "lfw_siamese_train_test"
layer {
name: "pair_data"
type: "Data"
top: "pair_data"
top: "sim"
include {
phase: TRAIN
}
transform_param {
scale: 0.00390625
}
data_param {
source: "examples/lfw_siamese/01_lfw_train_leveldb"
batch_size: 64
}
}
layer {
name: "pair_data"
type: "Data"
top: "pair_data"
top: "sim"
include {
phase: TEST
}
transform_param {
scale: 0.00390625
}
data_param {
source: "examples/lfw_siamese/01_lfw_test_leveldb"
batch_size: 100
}
}
layer {
name: "slice_pair"
type: "Slice"
bottom: "pair_data"
top: "data"
top: "data_p"
slice_param {
slice_dim: 1
slice_point: 1
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
name: "conv1_w"
lr_mult: 1
}
param {
name: "conv1_b"
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
name: "conv2_w"
lr_mult: 1
}
param {
name: "conv2_b"
lr_mult: 2
}
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool2"
top: "ip1"
param {
name: "ip1_w"
lr_mult: 1
}
param {
name: "ip1_b"
lr_mult: 2
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "ip1"
top: "ip1"
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
name: "ip2_w"
lr_mult: 1
}
param {
name: "ip2_b"
lr_mult: 2
}
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "feat"
type: "InnerProduct"
bottom: "ip2"
top: "feat"
param {
name: "feat_w"
lr_mult: 1
}
param {
name: "feat_b"
lr_mult: 2
}
inner_product_param {
num_output: 2
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "conv1_p"
type: "Convolution"
bottom: "data_p"
top: "conv1_p"
param {
name: "conv1_w"
lr_mult: 1
}
param {
name: "conv1_b"
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1_p"
type: "Pooling"
bottom: "conv1_p"
top: "pool1_p"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2_p"
type: "Convolution"
bottom: "pool1_p"
top: "conv2_p"
param {
name: "conv2_w"
lr_mult: 1
}
param {
name: "conv2_b"
lr_mult: 2
}
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool2_p"
type: "Pooling"
bottom: "conv2_p"
top: "pool2_p"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "ip1_p"
type: "InnerProduct"
bottom: "pool2_p"
top: "ip1_p"
param {
name: "ip1_w"
lr_mult: 1
}
param {
name: "ip1_b"
lr_mult: 2
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1_p"
type: "ReLU"
bottom: "ip1_p"
top: "ip1_p"
}
layer {
name: "ip2_p"
type: "InnerProduct"
bottom: "ip1_p"
top: "ip2_p"
param {
name: "ip2_w"
lr_mult: 1
}
param {
name: "ip2_b"
lr_mult: 2
}
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "feat_p"
type: "InnerProduct"
bottom: "ip2_p"
top: "feat_p"
param {
name: "feat_w"
lr_mult: 1
}
param {
name: "feat_b"
lr_mult: 2
}
inner_product_param {
num_output: 2
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "loss"
type: "ContrastiveLoss"
bottom: "feat"
bottom: "feat_p"
bottom: "sim"
top: "loss"
contrastive_loss_param {
margin: 1
}
}
#!/usr/bin/env sh
TOOLS=./build/tools
$TOOLS/caffe train --solver=examples/lfw_siamese/lfw_siamese_solver.prototxt
@m10303430
Copy link

I download your convert_lfw_siamese_data.cpp. But i don't know how to create training database. How sign label for image?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment