Use pytorch-transformers from hugging face to get bert embeddings in pytorch
import torch | |
import logging | |
from pytorch_transformers import BertModel, BertTokenizer | |
from pytorch_transformers import * | |
from typing import List | |
CLS_TOKEN = "[CLS]" | |
SEP_TOKEN = "[SEP]" | |
logger = logging.getLogger(__name__) | |
class InputExample(object): | |
"""A single training/test example for simple sequence classification.""" | |
def __init__(self, guid, text_a, text_b=None, label=None): | |
"""Constructs a InputExample. | |
Args: | |
guid: Unique id for the example. | |
text_a: string. The untokenized text of the first sequence. For single | |
sequence tasks, only this sequence must be specified. | |
text_b: (Optional) string. The untokenized text of the second sequence. | |
Only must be specified for sequence pair tasks. | |
label: (Optional) string. The label of the example. This should be | |
specified for train and dev examples, but not for test examples. | |
""" | |
self.guid = guid | |
self.text_a = text_a | |
self.text_b = text_b | |
self.label = label | |
class InputFeatures(object): | |
"""A single set of features of data.""" | |
def __init__(self, input_ids, input_mask, segment_ids): | |
self.input_ids = input_ids | |
self.input_mask = input_mask | |
self.segment_ids = segment_ids | |
def convert_examples_to_features(examples, tokenizer, max_seq_length, | |
cls_token_at_end=False, pad_on_left=False, | |
cls_token='[CLS]', sep_token='[SEP]', pad_token=0, | |
sequence_a_segment_id=0, sequence_b_segment_id=1, | |
cls_token_segment_id=1, pad_token_segment_id=0, | |
mask_padding_with_zero=True): | |
""" Loads a data file into a list of `InputBatch`s | |
`cls_token_at_end` define the location of the CLS token: | |
- False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP] | |
- True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS] | |
`cls_token_segment_id` define the segment id associated to the CLS token (0 for BERT, 2 for XLNet) | |
""" | |
features = [] | |
for (ex_index, example) in enumerate(examples): | |
if ex_index % 10000 == 0: | |
logger.info("Writing example %d of %d" % (ex_index, len(examples))) | |
tokens_a = tokenizer.tokenize(example.text_a) | |
tokens_b = None | |
if example.text_b: | |
tokens_b = tokenizer.tokenize(example.text_b) | |
# Modifies `tokens_a` and `tokens_b` in place so that the total | |
# length is less than the specified length. | |
# Account for [CLS], [SEP], [SEP] with "- 3" | |
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) | |
else: | |
# Account for [CLS] and [SEP] with "- 2" | |
if len(tokens_a) > max_seq_length - 2: | |
tokens_a = tokens_a[:(max_seq_length - 2)] | |
# The convention in BERT is: | |
# (a) For sequence pairs: | |
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] | |
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 | |
# (b) For single sequences: | |
# tokens: [CLS] the dog is hairy . [SEP] | |
# type_ids: 0 0 0 0 0 0 0 | |
# | |
# Where "type_ids" are used to indicate whether this is the first | |
# sequence or the second sequence. The embedding vectors for `type=0` and | |
# `type=1` were learned during pre-training and are added to the wordpiece | |
# embedding vector (and position vector). This is not *strictly* necessary | |
# since the [SEP] token unambiguously separates the sequences, but it makes | |
# it easier for the model to learn the concept of sequences. | |
# | |
# For classification tasks, the first vector (corresponding to [CLS]) is | |
# used as as the "sentence vector". Note that this only makes sense because | |
# the entire model is fine-tuned. | |
tokens = tokens_a + [sep_token] | |
segment_ids = [sequence_a_segment_id] * len(tokens) | |
if tokens_b: | |
tokens += tokens_b + [sep_token] | |
segment_ids += [sequence_b_segment_id] * (len(tokens_b) + 1) | |
if cls_token_at_end: | |
tokens = tokens + [cls_token] | |
segment_ids = segment_ids + [cls_token_segment_id] | |
else: | |
tokens = [cls_token] + tokens | |
segment_ids = [cls_token_segment_id] + segment_ids | |
input_ids = tokenizer.convert_tokens_to_ids(tokens) | |
# The mask has 1 for real tokens and 0 for padding tokens. Only real | |
# tokens are attended to. | |
input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) | |
# Zero-pad up to the sequence length. | |
padding_length = max_seq_length - len(input_ids) | |
if pad_on_left: | |
input_ids = ([pad_token] * padding_length) + input_ids | |
input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask | |
segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids | |
else: | |
input_ids = input_ids + ([pad_token] * padding_length) | |
input_mask = input_mask + ([0 if mask_padding_with_zero else 1] * padding_length) | |
segment_ids = segment_ids + ([pad_token_segment_id] * padding_length) | |
assert len(input_ids) == max_seq_length | |
assert len(input_mask) == max_seq_length | |
assert len(segment_ids) == max_seq_length | |
if ex_index < 5: | |
logger.info("*** Example ***") | |
logger.info("guid: %s" % (example.guid)) | |
logger.info("tokens: %s" % " ".join( | |
[str(x) for x in tokens])) | |
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) | |
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) | |
logger.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids])) | |
features.append( | |
InputFeatures(input_ids=input_ids, | |
input_mask=input_mask, | |
segment_ids=segment_ids)) | |
return features | |
def _truncate_seq_pair(tokens_a, tokens_b, max_length): | |
"""Truncates a sequence pair in place to the maximum length.""" | |
# This is a simple heuristic which will always truncate the longer sequence | |
# one token at a time. This makes more sense than truncating an equal percent | |
# of tokens from each, since if one sequence is very short then each token | |
# that's truncated likely contains more information than a longer sequence. | |
while True: | |
total_length = len(tokens_a) + len(tokens_b) | |
if total_length <= max_length: | |
break | |
if len(tokens_a) > len(tokens_b): | |
tokens_a.pop() | |
else: | |
tokens_b.pop() | |
def select_field(features, field): | |
"""As the output is dic, return relevant field""" | |
return [[choice[field] for choice in feature.choices_features] for feature in features] | |
def create_examples(_list, set_type="train"): | |
"""Creates examples for the training and dev sets.""" | |
examples = [] | |
for (i, line) in enumerate(_list): | |
guid = "%s-%s" % (set_type, i) | |
text_a = line | |
# text_b = line[1] | |
examples.append( | |
InputExample(guid=guid, text_a=text_a)) | |
return examples | |
class BertEmbedder: | |
def __init__(self, | |
pretrained_weights='bert-base-uncased', | |
tokenizer_class=BertTokenizer, | |
model_class=BertModel, | |
max_seq_len=20): | |
super().__init__() | |
self.pretrained_weights = pretrained_weights | |
self.tokenizer_class = tokenizer_class | |
self.model_class = model_class | |
self.tokenizer = self.tokenizer_class.from_pretrained(pretrained_weights) | |
self.model = self.model_class.from_pretrained(pretrained_weights) | |
self.max_seq_len = max_seq_len | |
# tokenizer = BertTokenizer.from_pretrained(pretrained_weights) | |
# model = BertModel.from_pretrained(pretrained_weights) | |
def get_bert_embeddings(self, | |
raw_text: List[str]) -> torch.tensor: | |
examples = create_examples(raw_text) | |
features = convert_examples_to_features( | |
examples, self.tokenizer, self.max_seq_len, True) | |
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) | |
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) | |
all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long) | |
last_hidden_states = self.model(all_input_ids)[0] # Models outputs are now tuples | |
print(last_hidden_states.size()) | |
return last_hidden_states | |
if __name__=="__main__": | |
embedder = BertEmbedder() | |
raw_text = ["[CLS] This is first element [SEP] continuing statement", | |
"[CLS] second element of the list."] | |
bert_embedding = embedder.get_bert_embeddings(raw_text) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment