Create a gist now

Instantly share code, notes, and snippets.

What would you like to do?
/* Ping))) Sensor
This sketch reads a PING))) ultrasonic rangefinder and returns the
distance to the closest object in range. To do this, it sends a pulse
to the sensor to initiate a reading, then listens for a pulse
to return. The length of the returning pulse is proportional to
the distance of the object from the sensor.
The circuit:
* +V connection of the PING))) attached to +5V
* GND connection of the PING))) attached to ground
* SIG connection of the PING))) attached to digital pin 7
created 3 Nov 2008
by David A. Mellis
modified 30 Aug 2011
by Tom Igoe
This example code is in the public domain.
// this constant won't change. It's the pin number
// of the sensor's output:
const int pingPin = 7;
void setup() {
// initialize serial communication:
void loop()
// establish variables for duration of the ping,
// and the distance result in inches and centimeters:
long duration, inches, cm;
// The PING))) is triggered by a HIGH pulse of 2 or more microseconds.
// Give a short LOW pulse beforehand to ensure a clean HIGH pulse:
pinMode(pingPin, OUTPUT);
digitalWrite(pingPin, LOW);
digitalWrite(pingPin, HIGH);
digitalWrite(pingPin, LOW);
//pinMode(pingPin, INPUT);
//duration = pulseIn(pingPin, HIGH);
// The same pin is used to read the signal from the PING))): a HIGH
// pulse whose duration is the time (in microseconds) from the sending
// of the ping to the reception of its echo off of an object.
pinMode(pingPin, INPUT);
duration = pulseIn(pingPin, HIGH);
long s= microsecondsToInches(duration);
//distance mapped to tone
if (s<=4){
tone(9, 130.81);
else if (s>4 && s<=8){
tone(9, 146.83);
else if (s>8 && s<=12){
tone(9, 164.81);
else if (s>12 && s<=16){
tone(9, 174.61);
else if (s>16 && s<=20){
tone(9, 196);
else if (s>20 && s<=24){
tone(9, 220);
else if (s>24 && s<=28){
tone(9, 246.94);
else if (s>28){
tone(9, 261.63);
// convert the time into a distance
inches = microsecondsToInches(duration);
cm = microsecondsToCentimeters(duration);
Serial.print("in, ");
Serial.print("cm, ");
//float frequency = map(duration, 150, 18121, 220, 880);
//tone(9, frequency);
long microsecondsToInches(long microseconds)
// According to Parallax's datasheet for the PING))), there are
// 73.746 microseconds per inch (i.e. sound travels at 1130 feet per
// second). This gives the distance travelled by the ping, outbound
// and return, so we divide by 2 to get the distance of the obstacle.
// See:
return microseconds / 74 / 2;
long microsecondsToCentimeters(long microseconds)
// The speed of sound is 340 m/s or 29 microseconds per centimeter.
// The ping travels out and back, so to find the distance of the
// object we take half of the distance travelled.
return microseconds / 29 / 2;
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment