Skip to content

Instantly share code, notes, and snippets.

@signaldust
Created January 15, 2022 17:11
Show Gist options
  • Save signaldust/74ce12ae67bf21a8141f9b4a19ce8365 to your computer and use it in GitHub Desktop.
Save signaldust/74ce12ae67bf21a8141f9b4a19ce8365 to your computer and use it in GitHub Desktop.
Halite - an analog circuit simulator in ~1k lines of code
#include <vector>
#include <string>
#include <cstdio>
#include <cmath>
// set to 1 to make LU factorization show pivots
#define VERBOSE_LU 0
// gMin for diodes etc..
static const double gMin = 1e-12;
// voltage tolerance
static const double vTolerance = 5e-5;
// thermal voltage for diodes/transistors
static const double vThermal = 0.026;
static const unsigned maxIter = 200;
//
// General overview
// ----------------
//
// Circuits are built from nodes and Components, where nodes are
// simply positive integers (with 0 designating ground).
//
// Every Component has one or more pins connecting to the circuit
// nodes as well as zero or more internal nets.
//
// While we map pins directly to nets here, the separation would
// be useful if the solver implemented stuff like net-reordering.
//
// MNACell represents a single entry in the solution matrix,
// where we store constants and time-step dependent constants
// separately, plus collect pointers to dynamic variables.
//
// We track enough information here that we only need to stamp once.
//
struct MNACell
{
double g; // simple values (eg. resistor conductance)
double gtimed; // time-scaled values (eg. capacitor conductance)
// pointers to dynamic variables, added in once per solve
std::vector<double*> gdyn;
double lu, prelu; // lu-solver values and matrix pre-LU cache
std::string txt; // text version of MNA for pretty-printing
void clear()
{
g = 0;
gtimed = 0;
txt = "";
}
void initLU(double stepScale)
{
prelu = g + gtimed * stepScale;
}
// restore matrix state and update dynamic values
void updatePre()
{
lu = prelu;
for(int i = 0; i < gdyn.size(); ++i)
{
lu += 0[gdyn[i]];
}
}
};
// this is for keeping track of node information
// for the purposes of more intelligent plotting
struct MNANodeInfo
{
enum Type
{
tVoltage,
tCurrent,
tCount
};
Type type; // one auto-range per unit-type
double scale; // scale factor (eg. charge to voltage)
std::string name; // node name for display
};
// Stores A and b for A*x - b = 0, where x is the solution.
//
// A is stored as a vector of rows, for easy in-place pivots
//
struct MNASystem
{
typedef std::vector<MNACell> MNAVector;
typedef std::vector<MNAVector> MNAMatrix;
// node names - for output
std::vector<MNANodeInfo> nodes;
MNAMatrix A;
MNAVector b;
double time;
void setSize(int n)
{
A.resize(n);
b.resize(n);
nodes.resize(n);
for(unsigned i = 0; i < n; ++i)
{
b[i].clear();
A[i].resize(n);
char buf[16];
sprintf(buf, "v%d", i);
nodes[i].name = buf;
nodes[i].type = MNANodeInfo::tVoltage;
nodes[i].scale = 1;
for(unsigned j = 0; j < n; ++j)
{
A[i][j].clear();
}
}
time = 0;
}
void stampTimed(double g, int r, int c, const std::string & txt)
{
A[r][c].gtimed += g;
A[r][c].txt += txt;
}
void stampStatic(double g, int r, int c, const std::string & txt)
{
A[r][c].g += g;
A[r][c].txt += txt;
}
};
struct IComponent
{
virtual ~IComponent() {}
// return the number of pins for this component
virtual int pinCount() = 0;
// return a pointer to array of pin locations
// NOTE: these will eventually be GUI locations to be unified
virtual int * getPinLocs() = 0;
// setup pins and calculate the size of the full netlist
// the Component<> will handle this automatically
//
// - netSize is the current size of the netlist
// - pins is an array of circuits nodes
//
virtual void setupNets(int & netSize, int & states, int * pins) = 0;
// stamp constants into the matrix
virtual void stamp(MNASystem & m) = 0;
// this is for allocating state variables
virtual void setupStates(int & states) {}
// update state variables, only tagged nodes
// this is intended for fixed-time compatible
// testing to make sure we can code-gen stuff
virtual void update(MNASystem & m) {}
// return true if we're done - will keep iterating
// until all the components are happy
virtual bool newton(MNASystem & m) { return true; }
// time-step change, for caps to fix their state-variables
virtual void scaleTime(double told_per_new) {}
};
template <int nPins = 0, int nInternalNets = 0>
struct Component : IComponent
{
static const int nNets = nPins + nInternalNets;
int pinLoc[nPins];
int nets[nNets];
int pinCount() { return nPins; }
int * getPinLocs() { return pinLoc; }
void setupNets(int & netSize, int & states, int * pins)
{
for(int i = 0; i < nPins; ++i)
{
nets[i] = pins[i];
}
for(int i = 0; i < nInternalNets; ++i)
{
nets[nPins + i] = netSize++;
}
setupStates(states);
}
};
static const int unitValueOffset = 4;
static const int unitValueMax = 8;
static const char * unitValueSuffixes[unitValueMax+1] = {
"p", "n", "u", "m", "", "k", "M", "G"
};
static void formatUnitValue(char * buf, double v, const char * unit)
{
int suff = unitValueOffset + int(log(v) / log(10.)) / 3;
if(v < 1) suff -= 1;
if(suff < 0) suff = 0;
if(suff > unitValueMax) suff = unitValueMax;
double vr = v / pow(10., 3*double(suff - unitValueOffset));
sprintf(buf, "%.0f%s%s", vr, unitValueSuffixes[suff], unit);
}
struct Resistor : Component<2>
{
double r;
Resistor(double r, int l0, int l1) : r(r)
{
pinLoc[0] = l0;
pinLoc[1] = l1;
}
void stamp(MNASystem & m)
{
char txt[16];
txt[0] = 'R';
formatUnitValue(txt+1, r, "");
double g = 1. / r;
m.stampStatic(+g, nets[0], nets[0], std::string("+") + txt);
m.stampStatic(-g, nets[0], nets[1], std::string("-") + txt);
m.stampStatic(-g, nets[1], nets[0], std::string("-") + txt);
m.stampStatic(+g, nets[1], nets[1], std::string("+") + txt);
}
};
struct Capacitor : Component<2, 1>
{
double c;
double stateVar;
double voltage;
Capacitor(double c, int l0, int l1) : c(c)
{
pinLoc[0] = l0;
pinLoc[1] = l1;
stateVar = 0;
voltage = 0;
}
void stamp(MNASystem & m)
{
char buf[16];
formatUnitValue(buf, c, "F");
// we can use a trick here, to get the capacitor to
// work on it's own line with direct trapezoidal:
//
// | -g*t +g*t +t | v+
// | +g*t -g*t -t | v-
// | +2*g -2*g -1 | state
//
// the logic with this is that for constant timestep:
//
// i1 = g*v1 - s0 , s0 = g*v0 + i0
// s1 = 2*g*v1 - s0 <-> s0 = 2*g*v1 - s1
//
// then if we substitute back:
// i1 = g*v1 - (2*g*v1 - s1)
// = s1 - g*v1
//
// this way we just need to copy the new state to the
// next timestep and there's no actual integration needed
//
// the "half time-step" error here means that our state
// is 2*c*v - i/t but we fix this for display in update
// and correct the current-part on time-step changes
// trapezoidal needs another factor of two for the g
// since c*(v1 - v0) = (i1 + i0)/(2*t), where t = 1/T
double g = 2*c;
m.stampTimed(+1, nets[0], nets[2], "+t");
m.stampTimed(-1, nets[1], nets[2], "-t");
m.stampTimed(-g, nets[0], nets[0], std::string("-t*") + buf);
m.stampTimed(+g, nets[0], nets[1], std::string("+t*") + buf);
m.stampTimed(+g, nets[1], nets[0], std::string("+t*") + buf);
m.stampTimed(-g, nets[1], nets[1], std::string("-t*") + buf);
m.stampStatic(+2*g, nets[2], nets[0], std::string("+2*") + buf);
m.stampStatic(-2*g, nets[2], nets[1], std::string("-2*") + buf);
m.stampStatic(-1, nets[2], nets[2], "-1");
// see the comment about v:C[%d] below
sprintf(buf, "q:C:%d,%d", pinLoc[0], pinLoc[1]);
m.b[nets[2]].gdyn.push_back(&stateVar);
m.b[nets[2]].txt = buf;
// this isn't quite right as state stores 2*c*v - i/t
// however, we'll fix this in updateFull() for display
sprintf(buf, "v:C:%d,%d", pinLoc[0], pinLoc[1]);
m.nodes[nets[2]].name = buf;
m.nodes[nets[2]].scale = 1 / c;
}
void update(MNASystem & m)
{
stateVar = m.b[nets[2]].lu;
// solve legit voltage from the pins
voltage = m.b[nets[0]].lu - m.b[nets[1]].lu;
// then we can store this for display here
// since this value won't be used at this point
m.b[nets[2]].lu = c*voltage;
}
void scaleTime(double told_per_new)
{
// the state is 2*c*voltage - i/t0
// so we subtract out the voltage, scale current
// and then add the voltage back to get new state
//
// note that this also works if the old rate is infinite
// (ie. t0=0) when going from DC analysis to transient
//
double qq = 2*c*voltage;
stateVar = qq + (stateVar - qq)*told_per_new;
}
};
struct Voltage : Component<2, 1>
{
double v;
Voltage(double v, int l0, int l1) : v(v)
{
pinLoc[0] = l0;
pinLoc[1] = l1;
}
void stamp(MNASystem & m)
{
m.stampStatic(-1, nets[0], nets[2], "-1");
m.stampStatic(+1, nets[1], nets[2], "+1");
m.stampStatic(+1, nets[2], nets[0], "+1");
m.stampStatic(-1, nets[2], nets[1], "-1");
char buf[16];
sprintf(buf, "%+.2gV", v);
m.b[nets[2]].g = v;
m.b[nets[2]].txt = buf;
sprintf(buf, "i:V(%+.2g):%d,%d", v, pinLoc[0], pinLoc[1]);
m.nodes[nets[2]].name = buf;
m.nodes[nets[2]].type = MNANodeInfo::tCurrent;
}
};
// probe a differential voltage
// also forces this voltage to actually get solved :)
struct Probe : Component<2, 1>
{
Probe(int l0, int l1)
{
pinLoc[0] = l0;
pinLoc[1] = l1;
}
void stamp(MNASystem & m)
{
// vp + vn - vd = 0
m.stampStatic(+1, nets[2], nets[0], "+1");
m.stampStatic(-1, nets[2], nets[1], "-1");
m.stampStatic(-1, nets[2], nets[2], "-1");
m.nodes[nets[2]].name = "v:probe";
}
void update(MNASystem & m)
{
// we could do output here :)
}
};
// function voltage generator
struct Function : Component<2,1>
{
typedef double (*FuncPtr)(double t);
FuncPtr fn;
double v;
Function(FuncPtr fn, int l0, int l1) : fn(fn)
{
pinLoc[0] = l0;
pinLoc[1] = l1;
v = fn(0);
}
void stamp(MNASystem & m)
{
// this is identical to voltage source
// except voltage is dynanic
m.stampStatic(-1, nets[0], nets[2], "-1");
m.stampStatic(+1, nets[1], nets[2], "+1");
m.stampStatic(+1, nets[2], nets[0], "+1");
m.stampStatic(-1, nets[2], nets[1], "-1");
char buf[16];
m.b[nets[2]].gdyn.push_back(&v);
sprintf(buf, "Vfn:%d,%d", pinLoc[0], pinLoc[1]);
m.b[nets[2]].txt = buf;
sprintf(buf, "i:Vfn:%d,%d", pinLoc[0], pinLoc[1]);
m.nodes[nets[2]].name = buf;
m.nodes[nets[2]].type = MNANodeInfo::tCurrent;
}
void update(MNASystem & m)
{
v = fn(m.time);
}
};
// POD-struct for PN-junction data, for diodes and BJTs
//
struct JunctionPN
{
// variables
double geq, ieq, veq;
// parameters
double is, nvt, rnvt, vcrit;
};
void initJunctionPN(JunctionPN & pn, double is, double n)
{
pn.is = is;
pn.nvt = n * vThermal;
pn.rnvt = 1 / pn.nvt;
pn.vcrit = pn.nvt * log(pn.nvt / (pn.is * sqrt(2.)));
}
// linearize junction at the specified voltage
//
// ideally we could handle series resistance here as well
// to avoid putting it on a separate node, but not sure how
// to make that work as it looks like we'd need Lambert-W then
void linearizeJunctionPN(JunctionPN & pn, double v)
{
double e = pn.is * exp(v * pn.rnvt);
double i = e - pn.is + gMin * v;
double g = e * pn.rnvt + gMin;
pn.geq = g;
pn.ieq = v*g - i;
pn.veq = v;
}
// returns true if junction is good enough
bool newtonJunctionPN(JunctionPN & pn, double v)
{
double dv = v - pn.veq;
if(fabs(dv) < vTolerance) return true;
// check critical voltage and adjust voltage if over
if(v > pn.vcrit)
{
// this formula comes from Qucs documentation
v = pn.veq + pn.nvt*log((std::max)(pn.is, 1+dv*pn.rnvt));
}
linearizeJunctionPN(pn, v);
return false;
}
struct Diode : Component<2, 2>
{
JunctionPN pn;
// should make these parameters
double rs;
// l0 -->|-- l1 -- parameters default to approx 1N4148
Diode(int l0, int l1,
double rs = 10., double is = 35e-12, double n = 1.24)
: rs(rs)
{
pinLoc[0] = l0;
pinLoc[1] = l1;
initJunctionPN(pn, is, n);
// FIXME: move init to some restart routine?
// initial condition v = 0
linearizeJunctionPN(pn, 0);
}
bool newton(MNASystem & m)
{
return newtonJunctionPN(pn, m.b[nets[2]].lu);
}
void stamp(MNASystem & m)
{
// Diode could be built with 3 extra nodes:
//
// | . . . . +1 | V+
// | . . . . -1 | V-
// | . . grs -grs -1 | v:D
// | . . -grs grs+geq . | v:pn = ieq
// | -1 +1 +1 . . | i:pn
//
// Here grs is the 1/rs series conductance.
//
// This gives us the junction voltage (v:pn) and
// current (i:pn) and the composite voltage (v:D).
//
// The i:pn row is an ideal transformer connecting
// the floating diode to the ground-referenced v:D
// where we connect the series resistance to v:pn
// that solves the diode equation with Newton.
//
// We can then add the 3rd row to the bottom 2 with
// multipliers 1 and -rs = -1/grs and drop it:
//
// | . . . +1 | V+
// | . . . -1 | V-
// | . . geq -1 | v:pn = ieq
// | -1 +1 +1 rs | i:pn
//
// Note that only the v:pn row here is non-linear.
//
// We could even do away without the separate row for
// the current, which would lead to the following:
//
// | +grs -grs -grs |
// | -grs +grs +grs |
// | -grs +grs +grs+geq | = ieq
//
// In practice we keep the current row since it's
// nice to have it as an output anyway.
//
m.stampStatic(-1, nets[3], nets[0], "-1");
m.stampStatic(+1, nets[3], nets[1], "+1");
m.stampStatic(+1, nets[3], nets[2], "+1");
m.stampStatic(+1, nets[0], nets[3], "+1");
m.stampStatic(-1, nets[1], nets[3], "-1");
m.stampStatic(-1, nets[2], nets[3], "-1");
m.stampStatic(rs, nets[3], nets[3], "rs:pn");
m.A[nets[2]][nets[2]].gdyn.push_back(&pn.geq);
m.A[nets[2]][nets[2]].txt = "gm:D";
m.b[nets[2]].gdyn.push_back(&pn.ieq);
char buf[16];
sprintf(buf, "i0:D:%d,%d", pinLoc[0], pinLoc[1]);
m.b[nets[2]].txt = buf;
sprintf(buf, "v:D:%d,%d", pinLoc[0], pinLoc[1]);
m.nodes[nets[2]].name = buf;
sprintf(buf, "i:D:%d,%d", pinLoc[0], pinLoc[1]);
m.nodes[nets[3]].name = buf;
m.nodes[nets[3]].type = MNANodeInfo::tCurrent;
}
};
struct BJT : Component<3, 4>
{
// emitter and collector junctions
JunctionPN pnC, pnE;
// forward and reverse alpha
double af, ar, rsbc, rsbe;
bool pnp;
BJT(int b, int c, int e, bool pnp = false) : pnp(pnp)
{
pinLoc[0] = b;
pinLoc[1] = c;
pinLoc[2] = e;
// this attempts a 2n3904-style small-signal
// transistor, although the values are a bit
// arbitrarily set to "something reasonable"
// forward and reverse beta
double bf = 200;
double br = 20;
// forward and reverse alpha
af = bf / (1 + bf);
ar = br / (1 + br);
// these are just rb+re and rb+rc
// this is not necessarily the best way to
// do anything, but having junction series
// resistances helps handle degenerate cases
rsbc = 5.8376+0.0001;
rsbe = 5.8376+2.65711;
//
// the basic rule is that:
// af * ise = ar * isc = is
//
// FIXME: with non-equal ideality factors
// we can get non-sensical results, why?
//
double is = 6.734e-15;
double n = 1.24;
initJunctionPN(pnE, is / af, n);
initJunctionPN(pnC, is / ar, n);
linearizeJunctionPN(pnE, 0);
linearizeJunctionPN(pnC, 0);
}
bool newton(MNASystem & m)
{
return newtonJunctionPN(pnC, m.b[nets[3]].lu)
& newtonJunctionPN(pnE, m.b[nets[4]].lu);
}
void stamp(MNASystem & m)
{
// The basic idea here is the same as with diodes
// except we do it once for each junction.
//
// With the transfer currents sourced from the
// diode currents, NPN then looks like this:
//
// 0 | . . . . . 1-ar 1-af | vB
// 1 | . . . . . -1 +af | vC
// 2 | . . . . . +ar -1 | vE
// 3 | . . . gc . -1 . | v:Qbc = ic
// 4 | . . . . ge . -1 | v:Qbe = ie
// 5 | -1 +1 . +1 . rsbc . | i:Qbc
// 6 | -1 . +1 . +1 . rsbe | i:Qbe
// ------------------------
// 0 1 2 3 4 5 6
//
// For PNP version, we simply flip the junctions
// by changing signs of (3,5),(5,3) and (4,6),(6,4).
//
// Also just like diodes, we have junction series
// resistances, rather than terminal resistances.
//
// This works just as well, but should be kept
// in mind when fitting particular transistors.
//
// diode currents to external base
m.stampStatic(1-ar, nets[0], nets[5], "1-ar");
m.stampStatic(1-af, nets[0], nets[6], "1-af");
// diode currents to external collector and emitter
m.stampStatic(-1, nets[1], nets[5], "-1");
m.stampStatic(-1, nets[2], nets[6], "-1");
// series resistances
m.stampStatic(rsbc, nets[5], nets[5], "rsbc");
m.stampStatic(rsbe, nets[6], nets[6], "rsbe");
// current - junction connections
// for the PNP case we flip the signs of these
// to flip the diode junctions wrt. the above
if(pnp)
{
m.stampStatic(-1, nets[5], nets[3], "-1");
m.stampStatic(+1, nets[3], nets[5], "+1");
m.stampStatic(-1, nets[6], nets[4], "-1");
m.stampStatic(+1, nets[4], nets[6], "+1");
}
else
{
m.stampStatic(+1, nets[5], nets[3], "+1");
m.stampStatic(-1, nets[3], nets[5], "-1");
m.stampStatic(+1, nets[6], nets[4], "+1");
m.stampStatic(-1, nets[4], nets[6], "-1");
}
// external voltages to collector current
m.stampStatic(-1, nets[5], nets[0], "-1");
m.stampStatic(+1, nets[5], nets[1], "+1");
// external voltages to emitter current
m.stampStatic(-1, nets[6], nets[0], "-1");
m.stampStatic(+1, nets[6], nets[2], "+1");
// source transfer currents to external pins
m.stampStatic(+ar, nets[2], nets[5], "+ar");
m.stampStatic(+af, nets[1], nets[6], "+af");
char buf[16];
// dynamic variables
m.A[nets[3]][nets[3]].gdyn.push_back(&pnC.geq);
m.A[nets[3]][nets[3]].txt = "gm:Qbc";
m.b[nets[3]].gdyn.push_back(&pnC.ieq);
sprintf(buf, "i0:Q:%d,%d,%d:cb", pinLoc[0], pinLoc[1], pinLoc[2]);
m.b[nets[3]].txt = buf;
m.A[nets[4]][nets[4]].gdyn.push_back(&pnE.geq);
m.A[nets[4]][nets[4]].txt = "gm:Qbe";
m.b[nets[4]].gdyn.push_back(&pnE.ieq);
sprintf(buf, "i0:Q:%d,%d,%d:eb", pinLoc[0], pinLoc[1], pinLoc[2]);
m.b[nets[4]].txt = buf;
sprintf(buf, "v:Q:%d,%d,%d:%s",
pinLoc[0], pinLoc[1], pinLoc[2], pnp ? "cb" : "bc");
m.nodes[nets[3]].name = buf;
sprintf(buf, "v:Q:%d,%d,%d:%s",
pinLoc[0], pinLoc[1], pinLoc[2], pnp ? "eb" : "be");
m.nodes[nets[4]].name = buf;
sprintf(buf, "i:Q:%d,%d,%d:bc", pinLoc[0], pinLoc[1], pinLoc[2]);
m.nodes[nets[5]].name = buf;
m.nodes[nets[5]].type = MNANodeInfo::tCurrent;
m.nodes[nets[5]].scale = 1 - ar;
sprintf(buf, "i:Q:%d,%d,%d:be", pinLoc[0], pinLoc[1], pinLoc[2]);
m.nodes[nets[6]].name = buf;
m.nodes[nets[6]].type = MNANodeInfo::tCurrent;
m.nodes[nets[6]].scale = 1 - af;
}
};
struct NetList
{
typedef std::vector<IComponent*> ComponentList;
NetList(int nodes) : nets(nodes), states(0)
{
}
void addComponent(IComponent * c)
{
// this is a bit "temporary" for now
c->setupNets(nets, states, c->getPinLocs());
components.push_back(c);
}
void buildSystem()
{
system.setSize(nets);
for(int i = 0; i < components.size(); ++i)
{
components[i]->stamp(system);
}
printf("Prepare for DC analysis..\n");
setStepScale(0);
tStep = 0;
}
void dumpMatrix()
{
std::vector<int> maxWidth(nets);
for(int i = 0; i < nets; ++i) maxWidth[i] = 1;
int nnMax = 1;
for(int i = 0; i < nets; ++i)
{
nnMax = std::max(nnMax, (int)system.nodes[i].name.size());
for(int j = 0; j < nets; ++j)
{
maxWidth[j] = std::max(maxWidth[j],
(int)system.A[i][j].txt.size());
}
}
char buf[1024];
for(unsigned i = 0; i < nets; ++i)
{
int off = sprintf(buf, "%2d: | ", i);
for(int j = 0; j < nets; ++j)
{
off += sprintf(buf+off,
" %*s ", maxWidth[j],
system.A[i][j].txt.size()
? system.A[i][j].txt.c_str()
: ((system.A[i][j].lu==0) ? "." : "#"));
}
sprintf(buf+off, " | %-*s = %s",
nnMax, system.nodes[i].name.c_str(),
system.b[i].txt.size()
? system.b[i].txt.c_str() : (!i ? "ground" : "0"));
puts(buf);
}
}
void setTimeStep(double tStepSize)
{
for(int i = 0; i < components.size(); ++i)
{
components[i]->scaleTime(tStep / tStepSize);
}
tStep = tStepSize;
double stepScale = 1. / tStep;
printf("timeStep changed to %.2g (%.2g Hz)\n", tStep, stepScale);
setStepScale(stepScale);
}
void simulateTick()
{
int iter;
for(iter = 0; iter < maxIter; ++iter)
{
// restore matrix state and add dynamic values
updatePre();
luFactor();
luForward();
luSolve();
if(newton()) break;
}
system.time += tStep;
update();
printf(" %02.4f |", system.time);
int fillPost = 0;
for(int i = 1; i < nets; ++i)
{
printf("\t%+.4e", system.b[i].lu * system.nodes[i].scale);
for(int j = 1; j < nets; ++j)
{
if(system.A[i][j].lu != 0) ++fillPost;
}
}
printf("\t %d iters, LU density: %.1f%%\n",
iter, 100 * fillPost / ((nets-1.f)*(nets-1.f)));
}
void printHeaders()
{
printf("\n time: | ");
for(int i = 1; i < nets; ++i)
{
printf("%16s", system.nodes[i].name.c_str());
}
printf("\n\n");
}
// plotting and such would want to use this
const MNASystem & getMNA() { return system; }
protected:
double tStep;
int nets, states;
ComponentList components;
MNASystem system;
void update()
{
for(int i = 0; i < components.size(); ++i)
{
components[i]->update(system);
}
}
// return true if we're done
bool newton()
{
bool done = 1;
for(int i = 0; i < components.size(); ++i)
{
done &= components[i]->newton(system);
}
return done;
}
void initLU(double stepScale)
{
for(int i = 0; i < nets; ++i)
{
system.b[i].initLU(stepScale);
for(int j = 0; j < nets; ++j)
{
system.A[i][j].initLU(stepScale);
}
}
}
void setStepScale(double stepScale)
{
// initialize matrix for LU and save it to cache
initLU(stepScale);
int fill = 0;
for(int i = 1; i < nets; ++i)
{
for(int j = 1; j < nets; ++j)
{
if(system.A[i][j].prelu != 0
|| system.A[i][j].gdyn.size()) ++fill;
}
}
printf("MNA density %.1f%%\n", 100 * fill / ((nets-1.)*(nets-1.)));
}
void updatePre()
{
for(int i = 0; i < nets; ++i)
{
system.b[i].updatePre();
for(int j = 0; j < nets; ++j)
{
system.A[i][j].updatePre();
}
}
}
void luFactor()
{
int p;
for(p = 1; p < nets; ++p)
{
// FIND PIVOT
{
int pr = p;
for(int r = p; r < nets; ++r)
{
if(fabs(system.A[r][p].lu)
> fabs(system.A[pr][p].lu))
{
pr = r;
}
}
// swap if necessary
if(pr != p)
{
std::swap(system.A[p], system.A[pr]);
std::swap(system.b[p], system.b[pr]);
}
#if VERBOSE_LU
printf("pivot %d (from %d): %+.2e\n",
p, pr, system.A[p][p].lu);
#endif
}
if(0 == system.A[p][p].lu)
{
printf("Failed to find a pivot!!");
return;
}
// take reciprocal for D entry
system.A[p][p].lu = 1 / system.A[p][p].lu;
// perform reduction on rows below
for(int r = p+1; r < nets; ++r)
{
if(system.A[r][p].lu == 0) continue;
system.A[r][p].lu *= system.A[p][p].lu;
for(int c = p+1; c < nets; ++c)
{
if(system.A[p][c].lu == 0) continue;
system.A[r][c].lu -=
system.A[p][c].lu * system.A[r][p].lu;
}
}
}
}
// this does forward substitution for the solution vector
int luForward()
{
int p;
for(p = 1; p < nets; ++p)
{
// perform reduction on rows below
for(int r = p+1; r < nets; ++r)
{
if(system.A[r][p].lu == 0) continue;
if(system.b[p].lu == 0) continue;
system.b[r].lu -= system.b[p].lu * system.A[r][p].lu;
}
}
return p;
}
// solves nodes backwards from limit-1
// if solveAll is true, solves all the nodes
// otherwise if solveNoIter is true, solves until !wantUpdate
// if both flags are false, solves until !wantIter
int luSolve()
{
for(int r = nets; --r;)
{
//printf("solve node %d\n", r);
for(int s = r+1; s < nets; ++s)
{
system.b[r].lu -= system.b[s].lu * system.A[r][s].lu;
}
system.b[r].lu *= system.A[r][r].lu;
}
return 1;
}
};
double fnGen(double t)
{
if(t < 0.0001) return 0;
return (fmod(2000*t, 1) > (.5+.4*sin(2*acos(-1)*100*t))) ? .25 : -.25;
}
int main()
{
/*
BJT test circuit
this is kinda good at catching problems :)
*/
NetList * net = new NetList(8);
// node 1 is +12V
net->addComponent(new Voltage(+12, 1, 0));
// bias for base
net->addComponent(new Resistor(100e3, 2, 1));
net->addComponent(new Resistor(11e3, 2, 0));
// input cap and function
net->addComponent(new Capacitor(.1e-6, 2, 5));
net->addComponent(new Resistor(1e3, 5, 6));
net->addComponent(new Function(fnGen, 6, 0));
// collector resistance
net->addComponent(new Resistor(10e3, 1, 3));
// emitter resistance
net->addComponent(new Resistor(680, 4, 0));
// bjt on b:2,c:3,e:4
net->addComponent(new BJT(2,3,4));
// output emitter follower (direct rail collector?)
net->addComponent(new BJT(3, 1, 7));
net->addComponent(new Resistor(100e3, 7, 0));
net->addComponent(new Probe(7, 0));
net->buildSystem();
// get DC solution (optional)
net->simulateTick();
net->setTimeStep(1e-4);
net->printHeaders();
for(int i = 0; i < 25; ++i)
{
net->simulateTick();
}
net->printHeaders();
net->dumpMatrix();
};
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment