- Kurobako Version: 0.2.6
- Number of Solvers: 2
- Number of Problems: 42
- Metrics Precedence:
best value -> AUC
Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report.
Solver | Borda | Firsts |
---|---|---|
Optuna | 1 | 38 |
TPE | 4 | 41 |
(1) Problem: sigopt/evalset/Xor(dim=9)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 0.993390 +- 0.005154 | 79.062 +- 0.223 | 2.099 +- 0.272 |
1 | TPE (study) | 0.989686 +- 0.007573 | 78.846 +- 0.655 | 0.154 +- 0.024 |
(2) Problem: sigopt/evalset/CarromTable(dim=2)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | TPE (study) | -22.872949 +- 1.005172 | -1652.571 +- 190.729 | 0.052 +- 0.010 |
2 | Optuna (study) | -22.194564 +- 3.416137 | -1348.154 +- 352.782 | 0.514 +- 0.071 |
(3) Problem: sigopt/evalset/DeflectedCorrugatedSpring(dim=4)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -0.717780 +- 0.182056 | -22.876 +- 16.804 | 0.974 +- 0.108 |
1 | TPE (study) | -0.727596 +- 0.196942 | -29.251 +- 19.134 | 0.082 +- 0.017 |
(4) Problem: sigopt/evalset/McCourt07(dim=6, res=12)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | TPE (study) | -0.275000 +- 0.068550 | -5.367 +- 6.368 | 0.108 +- 0.018 |
2 | Optuna (study) | -0.227778 +- 0.064310 | -0.981 +- 8.374 | 1.447 +- 0.150 |
(5) Problem: sigopt/evalset/Trid(dim=6)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -39.322946 +- 6.127839 | -972.224 +- 852.826 | 1.390 +- 0.141 |
1 | TPE (study) | -41.375532 +- 5.999828 | -1136.604 +- 1061.727 | 0.114 +- 0.012 |
(6) Problem: sigopt/evalset/Hartmann3(dim=3)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -3.794874 +- 0.068767 | -268.923 +- 16.981 | 0.714 +- 0.084 |
1 | TPE (study) | -3.771731 +- 0.143582 | -266.521 +- 16.429 | 0.067 +- 0.015 |
(7) Problem: sigopt/evalset/Rastrigin(dim=8)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 51.567655 +- 9.603779 | 5092.247 +- 559.509 | 1.890 +- 0.163 |
1 | TPE (study) | 47.929794 +- 8.504059 | 5011.361 +- 569.197 | 0.131 +- 0.008 |
(8) Problem: sigopt/evalset/CarromTable(dim=2, int=[0])
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | TPE (study) | -19.382277 +- 2.139465 | -1398.042 +- 240.191 | 0.048 +- 0.009 |
2 | Optuna (study) | -18.558809 +- 2.898384 | -1124.117 +- 355.133 | 0.546 +- 0.097 |
(9) Problem: sigopt/evalset/Branin02(dim=2, int=[0])
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 8.322043 +- 1.121514 | 906.763 +- 163.107 | 0.543 +- 0.086 |
1 | TPE (study) | 8.176882 +- 0.891681 | 898.070 +- 197.586 | 0.047 +- 0.008 |
(10) Problem: sigopt/evalset/Exponential(dim=6)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -0.988995 +- 0.009684 | -74.520 +- 1.445 | 1.411 +- 0.160 |
2 | TPE (study) | -0.985751 +- 0.009745 | -73.532 +- 1.698 | 0.113 +- 0.014 |
(11) Problem: sigopt/evalset/McCourt27(dim=3)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -1.115265 +- 0.290447 | -29.629 +- 27.596 | 0.736 +- 0.074 |
1 | TPE (study) | -1.181162 +- 0.392760 | -28.515 +- 20.999 | 0.065 +- 0.008 |
(12) Problem: sigopt/evalset/Easom(dim=4)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 17.207166 +- 4.150281 | 1532.213 +- 153.864 | 0.965 +- 0.118 |
1 | TPE (study) | 16.640832 +- 4.458301 | 1513.019 +- 152.896 | 0.081 +- 0.015 |
(13) Problem: sigopt/evalset/Michalewicz(dim=4)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -2.456921 +- 0.409687 | -154.184 +- 24.965 | 1.017 +- 0.103 |
1 | TPE (study) | -2.429811 +- 0.344868 | -151.232 +- 24.882 | 0.079 +- 0.012 |
(14) Problem: sigopt/evalset/Sphere(dim=7)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 2.584901 +- 1.340599 | 653.296 +- 206.452 | 1.631 +- 0.149 |
1 | TPE (study) | 2.519518 +- 1.088015 | 712.224 +- 149.846 | 0.129 +- 0.017 |
(15) Problem: sigopt/evalset/Tripod(dim=2)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 5.096237 +- 2.344442 | 1012.417 +- 305.085 | 0.494 +- 0.058 |
1 | TPE (study) | 4.703087 +- 1.725078 | 955.442 +- 243.257 | 0.050 +- 0.008 |
(16) Problem: sigopt/evalset/Shekel05(dim=4)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -1.589587 +- 0.735620 | -69.877 +- 19.731 | 0.974 +- 0.084 |
1 | TPE (study) | -2.369999 +- 1.654154 | -102.969 +- 69.721 | 0.086 +- 0.016 |
(17) Problem: sigopt/evalset/Ackley(dim=3)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 5.059500 +- 1.552897 | 710.526 +- 117.211 | 0.738 +- 0.102 |
1 | TPE (study) | 5.024110 +- 1.502778 | 744.546 +- 142.450 | 0.067 +- 0.021 |
(18) Problem: sigopt/evalset/LennardJones6(dim=6)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -0.978761 +- 0.045789 | -50.342 +- 9.442 | 1.409 +- 0.147 |
1 | TPE (study) | -0.964420 +- 0.065015 | -51.227 +- 10.873 | 0.108 +- 0.014 |
(19) Problem: sigopt/evalset/McCourt22(dim=5)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -2.578230 +- 0.242046 | -165.000 +- 23.266 | 1.210 +- 0.120 |
1 | TPE (study) | -2.707553 +- 0.254801 | -166.977 +- 15.933 | 0.099 +- 0.023 |
(20) Problem: sigopt/evalset/Ackley(dim=11, int=[0, 1, 2])
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 13.936461 +- 1.516013 | 1300.225 +- 72.129 | 2.650 +- 0.300 |
1 | TPE (study) | 14.140112 +- 1.929461 | 1290.064 +- 103.408 | 0.181 +- 0.019 |
(21) Problem: sigopt/evalset/Mishra06(dim=2)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -1.856294 +- 0.287699 | -100.549 +- 21.900 | 0.502 +- 0.045 |
1 | TPE (study) | -1.944638 +- 0.251441 | -100.954 +- 23.131 | 0.049 +- 0.008 |
(22) Problem: sigopt/evalset/Weierstrass(dim=3)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 13.312590 +- 0.432109 | 1113.177 +- 31.581 | 0.705 +- 0.088 |
1 | TPE (study) | 13.169722 +- 0.328912 | 1099.970 +- 24.815 | 0.066 +- 0.009 |
(23) Problem: sigopt/evalset/Ackley(dim=5)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 8.113488 +- 1.606887 | 980.545 +- 158.876 | 1.223 +- 0.169 |
1 | TPE (study) | 8.236194 +- 1.903449 | 1001.801 +- 126.397 | 0.091 +- 0.017 |
(24) Problem: sigopt/evalset/Bukin06(dim=2, int=[0])
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 9.722000 +- 5.270652 | 1883.877 +- 525.400 | 0.551 +- 0.063 |
1 | TPE (study) | 8.347149 +- 3.900352 | 1778.613 +- 446.735 | 0.050 +- 0.009 |
(25) Problem: sigopt/evalset/Schwefel20(dim=2, int=[0])
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 2.805165 +- 1.868455 | 955.988 +- 269.244 | 0.614 +- 0.071 |
1 | TPE (study) | 3.147916 +- 1.906583 | 940.110 +- 311.947 | 0.049 +- 0.009 |
(26) Problem: sigopt/evalset/Deb02(dim=6)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -0.745466 +- 0.058212 | -51.715 +- 3.635 | 1.418 +- 0.148 |
1 | TPE (study) | -0.731667 +- 0.071744 | -51.128 +- 4.275 | 0.107 +- 0.014 |
(27) Problem: sigopt/evalset/Ackley(dim=11)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 14.277443 +- 1.794100 | 1315.809 +- 91.249 | 2.556 +- 0.265 |
1 | TPE (study) | 14.521596 +- 1.513862 | 1305.979 +- 98.917 | 0.179 +- 0.015 |
(28) Problem: sigopt/evalset/Sphere(dim=7, int=[0, 1, 2, 3, 4])
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 2.103150 +- 1.342227 | 698.066 +- 210.207 | 1.755 +- 0.152 |
1 | TPE (study) | 2.689469 +- 1.195182 | 795.176 +- 214.213 | 0.119 +- 0.012 |
(29) Problem: sigopt/evalset/StyblinskiTang(dim=5)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -157.061698 +- 13.683493 | -10443.805 +- 860.943 | 1.159 +- 0.112 |
1 | TPE (study) | -159.368114 +- 13.823497 | -10983.855 +- 1194.895 | 0.091 +- 0.016 |
(30) Problem: sigopt/evalset/Ned01(dim=2)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 0.076205 +- 0.070345 | 14.860 +- 5.824 | 0.501 +- 0.046 |
1 | TPE (study) | 0.038726 +- 0.088347 | 13.520 +- 7.614 | 0.048 +- 0.008 |
(31) Problem: sigopt/evalset/YaoLiu(dim=5)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 20.587560 +- 5.389727 | 2416.369 +- 411.935 | 1.181 +- 0.137 |
1 | TPE (study) | 22.129447 +- 6.635147 | 2599.144 +- 393.332 | 0.099 +- 0.021 |
(32) Problem: sigopt/evalset/Easom(dim=5)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 19.598449 +- 2.335792 | 1618.950 +- 77.894 | 1.178 +- 0.134 |
1 | TPE (study) | 19.675417 +- 2.527447 | 1599.711 +- 140.754 | 0.099 +- 0.019 |
(33) Problem: sigopt/evalset/Ackley(dim=3, res=1)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 4.300000 +- 1.417745 | 658.700 +- 91.811 | 0.742 +- 0.118 |
1 | TPE (study) | 3.900000 +- 1.011599 | 595.333 +- 128.060 | 0.065 +- 0.009 |
(34) Problem: sigopt/evalset/McCourt19(dim=2)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -8.461423 +- 0.131150 | -594.724 +- 32.279 | 0.531 +- 0.071 |
1 | TPE (study) | -8.506519 +- 0.097196 | -584.351 +- 34.321 | 0.050 +- 0.009 |
(35) Problem: sigopt/evalset/Plateau(dim=2)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 30.000000 +- 0.000000 | 2386.167 +- 8.513 | 0.506 +- 0.047 |
1 | TPE (study) | 30.000000 +- 0.000000 | 2384.400 +- 8.333 | 0.049 +- 0.008 |
(36) Problem: sigopt/evalset/McCourt01(dim=7, res=10)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 0.026667 +- 0.092856 | 21.297 +- 10.298 | 1.623 +- 0.157 |
1 | TPE (study) | 0.013333 +- 0.123108 | 21.433 +- 8.740 | 0.129 +- 0.026 |
(37) Problem: sigopt/evalset/Shekel07(dim=4)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -2.223391 +- 0.891697 | -91.441 +- 20.872 | 0.978 +- 0.083 |
1 | TPE (study) | -2.352949 +- 1.194168 | -95.508 +- 33.456 | 0.084 +- 0.015 |
(38) Problem: sigopt/evalset/McCourt06(dim=5, res=12)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 2.847222 +- 0.048512 | 234.444 +- 4.336 | 1.185 +- 0.126 |
1 | TPE (study) | 2.844444 +- 0.041574 | 234.839 +- 5.059 | 0.097 +- 0.014 |
(39) Problem: sigopt/evalset/Sargan(dim=2, int=[0])
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 0.000881 +- 0.002711 | 73.963 +- 37.908 | 0.616 +- 0.071 |
1 | TPE (study) | 0.056329 +- 0.301516 | 79.598 +- 53.628 | 0.048 +- 0.013 |
(40) Problem: sigopt/evalset/McCourt02(dim=7)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -2.686687 +- 0.026472 | -203.463 +- 4.287 | 1.677 +- 0.165 |
1 | TPE (study) | -2.691230 +- 0.027726 | -204.052 +- 3.832 | 0.125 +- 0.018 |
(41) Problem: sigopt/evalset/Rastrigin(dim=8, res=0.1)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | TPE (study) | 40.000000 +- 9.309493 | 4412.000 +- 698.185 | 0.141 +- 0.017 |
2 | Optuna (study) | 46.000000 +- 10.198039 | 4801.333 +- 713.787 | 1.896 +- 0.163 |
(42) Problem: sigopt/evalset/Schwefel20(dim=2)
Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 3.066478 +- 1.381306 | 952.353 +- 255.962 | 0.583 +- 0.072 |
1 | TPE (study) | 2.518236 +- 1.449889 | 1103.380 +- 314.851 | 0.045 +- 0.005 |
recipe:
{
"optuna": {}
}
specification:
{
"name": "Optuna",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.1.0, kurobako-py=0.1.8"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
}
recipe:
{
"command": {
"path": "cargo",
"args": [
"run",
"--release",
"--example",
"tpe-solver"
]
}
}
specification:
{
"name": "TPE",
"attrs": {},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONCURRENT"
]
}
recipe:
{
"sigopt": {
"name": "ACKLEY",
"dim": 11
}
}
specification:
{
"name": "sigopt/evalset/Ackley(dim=11)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p6",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p7",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p8",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p9",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p10",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "ACKLEY",
"dim": 11,
"int": [
0,
1,
2
]
}
}
specification:
{
"name": "sigopt/evalset/Ackley(dim=11, int=[0, 1, 2])",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "DISCRETE",
"low": -10,
"high": 30
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "DISCRETE",
"low": -10,
"high": 30
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "DISCRETE",
"low": -10,
"high": 30
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p6",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p7",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p8",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p9",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p10",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "ACKLEY",
"dim": 3
}
}
specification:
{
"name": "sigopt/evalset/Ackley(dim=3)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "ACKLEY",
"dim": 3,
"res": 1.0
}
}
specification:
{
"name": "sigopt/evalset/Ackley(dim=3, res=1)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "ACKLEY",
"dim": 5
}
}
specification:
{
"name": "sigopt/evalset/Ackley(dim=5)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "BRANIN02",
"dim": 2,
"int": [
0
]
}
}
specification:
{
"name": "sigopt/evalset/Branin02(dim=2, int=[0])",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "DISCRETE",
"low": -5,
"high": 15
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 15.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "BUKIN06",
"dim": 2,
"int": [
0
]
}
}
specification:
{
"name": "sigopt/evalset/Bukin06(dim=2, int=[0])",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "DISCRETE",
"low": -15,
"high": -5
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -3.0,
"high": 3.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "CARROM_TABLE",
"dim": 2
}
}
specification:
{
"name": "sigopt/evalset/CarromTable(dim=2)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "CARROM_TABLE",
"dim": 2,
"int": [
0
]
}
}
specification:
{
"name": "sigopt/evalset/CarromTable(dim=2, int=[0])",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "DISCRETE",
"low": -10,
"high": 10
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "DEB02",
"dim": 6
}
}
specification:
{
"name": "sigopt/evalset/Deb02(dim=6)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "DEFLECTED_CORRUGATED_SPRING",
"dim": 4
}
}
specification:
{
"name": "sigopt/evalset/DeflectedCorrugatedSpring(dim=4)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 7.5
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 7.5
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 7.5
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 7.5
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "EASOM",
"dim": 4
}
}
specification:
{
"name": "sigopt/evalset/Easom(dim=4)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -100.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -100.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -100.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -100.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "EASOM",
"dim": 5
}
}
specification:
{
"name": "sigopt/evalset/Easom(dim=5)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -100.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -100.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -100.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -100.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": -100.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "EXPONENTIAL",
"dim": 6
}
}
specification:
{
"name": "sigopt/evalset/Exponential(dim=6)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -0.7,
"high": 0.2
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -0.7,
"high": 0.2
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -0.7,
"high": 0.2
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -0.7,
"high": 0.2
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": -0.7,
"high": 0.2
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": -0.7,
"high": 0.2
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "HARTMANN3",
"dim": 3
}
}
specification:
{
"name": "sigopt/evalset/Hartmann3(dim=3)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "LENNARD_JONES6",
"dim": 6
}
}
specification:
{
"name": "sigopt/evalset/LennardJones6(dim=6)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -3.0,
"high": 3.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -3.0,
"high": 3.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -3.0,
"high": 3.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -3.0,
"high": 3.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": -3.0,
"high": 3.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": -3.0,
"high": 3.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "MC_COURT01",
"dim": 7,
"res": 10.0
}
}
specification:
{
"name": "sigopt/evalset/McCourt01(dim=7, res=10)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p6",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "MC_COURT02",
"dim": 7
}
}
specification:
{
"name": "sigopt/evalset/McCourt02(dim=7)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p6",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "MC_COURT06",
"dim": 5,
"res": 12.0
}
}
specification:
{
"name": "sigopt/evalset/McCourt06(dim=5, res=12)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "MC_COURT07",
"dim": 6,
"res": 12.0
}
}
specification:
{
"name": "sigopt/evalset/McCourt07(dim=6, res=12)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "MC_COURT19",
"dim": 2
}
}
specification:
{
"name": "sigopt/evalset/McCourt19(dim=2)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "MC_COURT22",
"dim": 5
}
}
specification:
{
"name": "sigopt/evalset/McCourt22(dim=5)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "MC_COURT27",
"dim": 3
}
}
specification:
{
"name": "sigopt/evalset/McCourt27(dim=3)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "MICHALEWICZ",
"dim": 4
}
}
specification:
{
"name": "sigopt/evalset/Michalewicz(dim=4)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 3.141592653589793
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 3.141592653589793
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 3.141592653589793
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 3.141592653589793
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "MISHRA06",
"dim": 2
}
}
specification:
{
"name": "sigopt/evalset/Mishra06(dim=2)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "NED01",
"dim": 2
}
}
specification:
{
"name": "sigopt/evalset/Ned01(dim=2)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "PLATEAU",
"dim": 2
}
}
specification:
{
"name": "sigopt/evalset/Plateau(dim=2)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -2.34,
"high": 5.12
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -2.34,
"high": 5.12
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "RASTRIGIN",
"dim": 8
}
}
specification:
{
"name": "sigopt/evalset/Rastrigin(dim=8)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 2.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 2.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -2.0,
"high": 5.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -2.0,
"high": 5.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 2.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 2.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p6",
"range": {
"type": "CONTINUOUS",
"low": -2.0,
"high": 5.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p7",
"range": {
"type": "CONTINUOUS",
"low": -2.0,
"high": 5.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "RASTRIGIN",
"dim": 8,
"res": 0.1
}
}
specification:
{
"name": "sigopt/evalset/Rastrigin(dim=8, res=0.1)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 2.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 2.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -2.0,
"high": 5.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -2.0,
"high": 5.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 2.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 2.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p6",
"range": {
"type": "CONTINUOUS",
"low": -2.0,
"high": 5.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p7",
"range": {
"type": "CONTINUOUS",
"low": -2.0,
"high": 5.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "SARGAN",
"dim": 2,
"int": [
0
]
}
}
specification:
{
"name": "sigopt/evalset/Sargan(dim=2, int=[0])",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "DISCRETE",
"low": -2,
"high": 4
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -2.0,
"high": 4.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "SCHWEFEL20",
"dim": 2
}
}
specification:
{
"name": "sigopt/evalset/Schwefel20(dim=2)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -60.0,
"high": 100.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -60.0,
"high": 100.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "SCHWEFEL20",
"dim": 2,
"int": [
0
]
}
}
specification:
{
"name": "sigopt/evalset/Schwefel20(dim=2, int=[0])",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "DISCRETE",
"low": -60,
"high": 100
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -60.0,
"high": 100.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "SHEKEL05",
"dim": 4
}
}
specification:
{
"name": "sigopt/evalset/Shekel05(dim=4)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -0.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -0.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -0.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -0.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "SHEKEL07",
"dim": 4
}
}
specification:
{
"name": "sigopt/evalset/Shekel07(dim=4)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -0.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -0.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -0.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -0.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "SPHERE",
"dim": 7
}
}
specification:
{
"name": "sigopt/evalset/Sphere(dim=7)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 2.12
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 2.12
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 2.12
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 2.12
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 2.12
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 2.12
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p6",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 2.12
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "SPHERE",
"dim": 7,
"int": [
0,
1,
2,
3,
4
]
}
}
specification:
{
"name": "sigopt/evalset/Sphere(dim=7, int=[0, 1, 2, 3, 4])",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "DISCRETE",
"low": -5,
"high": 2
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "DISCRETE",
"low": -5,
"high": 2
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "DISCRETE",
"low": -5,
"high": 2
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "DISCRETE",
"low": -5,
"high": 2
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "DISCRETE",
"low": -5,
"high": 2
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 2.12
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p6",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 2.12
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "STYBLINSKI_TANG",
"dim": 5
}
}
specification:
{
"name": "sigopt/evalset/StyblinskiTang(dim=5)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 5.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 5.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 5.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 5.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 5.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "TRID",
"dim": 6
}
}
specification:
{
"name": "sigopt/evalset/Trid(dim=6)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "TRIPOD",
"dim": 2
}
}
specification:
{
"name": "sigopt/evalset/Tripod(dim=2)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -100.0,
"high": 100.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -100.0,
"high": 100.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "WEIERSTRASS",
"dim": 3
}
}
specification:
{
"name": "sigopt/evalset/Weierstrass(dim=3)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -0.5,
"high": 0.2
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -0.5,
"high": 0.2
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -0.5,
"high": 0.2
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "XOR",
"dim": 9
}
}
specification:
{
"name": "sigopt/evalset/Xor(dim=9)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -1.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -1.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -1.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -1.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": -1.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": -1.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p6",
"range": {
"type": "CONTINUOUS",
"low": -1.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p7",
"range": {
"type": "CONTINUOUS",
"low": -1.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p8",
"range": {
"type": "CONTINUOUS",
"low": -1.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
recipe:
{
"sigopt": {
"name": "YAO_LIU",
"dim": 5
}
}
specification:
{
"name": "sigopt/evalset/YaoLiu(dim=5)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 2.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 2.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 2.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 2.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 2.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
- problem: sigopt/evalset/Ackley(dim=11)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Ackley(dim=11)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Ackley(dim=11, int=[0, 1, 2])
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Ackley(dim=11, int=[0, 1, 2])
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Ackley(dim=3)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Ackley(dim=3)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Ackley(dim=3, res=1)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Ackley(dim=3, res=1)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Ackley(dim=5)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Ackley(dim=5)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Branin02(dim=2, int=[0])
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Branin02(dim=2, int=[0])
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Bukin06(dim=2, int=[0])
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Bukin06(dim=2, int=[0])
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/CarromTable(dim=2)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/CarromTable(dim=2)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/CarromTable(dim=2, int=[0])
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/CarromTable(dim=2, int=[0])
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Deb02(dim=6)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Deb02(dim=6)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/DeflectedCorrugatedSpring(dim=4)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/DeflectedCorrugatedSpring(dim=4)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Easom(dim=4)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Easom(dim=4)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Easom(dim=5)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Easom(dim=5)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Exponential(dim=6)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Exponential(dim=6)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Hartmann3(dim=3)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Hartmann3(dim=3)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/LennardJones6(dim=6)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/LennardJones6(dim=6)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/McCourt01(dim=7, res=10)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/McCourt01(dim=7, res=10)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/McCourt02(dim=7)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/McCourt02(dim=7)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/McCourt06(dim=5, res=12)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/McCourt06(dim=5, res=12)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/McCourt07(dim=6, res=12)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/McCourt07(dim=6, res=12)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/McCourt19(dim=2)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/McCourt19(dim=2)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/McCourt22(dim=5)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/McCourt22(dim=5)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/McCourt27(dim=3)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/McCourt27(dim=3)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Michalewicz(dim=4)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Michalewicz(dim=4)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Mishra06(dim=2)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Mishra06(dim=2)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Ned01(dim=2)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Ned01(dim=2)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Plateau(dim=2)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Plateau(dim=2)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Rastrigin(dim=8)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Rastrigin(dim=8)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Rastrigin(dim=8, res=0.1)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Rastrigin(dim=8, res=0.1)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Sargan(dim=2, int=[0])
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Sargan(dim=2, int=[0])
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Schwefel20(dim=2)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Schwefel20(dim=2)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Schwefel20(dim=2, int=[0])
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Schwefel20(dim=2, int=[0])
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Shekel05(dim=4)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Shekel05(dim=4)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Shekel07(dim=4)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Shekel07(dim=4)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Sphere(dim=7)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Sphere(dim=7)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Sphere(dim=7, int=[0, 1, 2, 3, 4])
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Sphere(dim=7, int=[0, 1, 2, 3, 4])
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/StyblinskiTang(dim=5)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/StyblinskiTang(dim=5)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Trid(dim=6)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Trid(dim=6)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Tripod(dim=2)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Tripod(dim=2)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Weierstrass(dim=3)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Weierstrass(dim=3)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Xor(dim=9)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/Xor(dim=9)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/YaoLiu(dim=5)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
- problem: sigopt/evalset/YaoLiu(dim=5)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1