Benchmark Result Report
- Kurobako Version: 0.2.6
- Number of Solvers: 2
- Number of Problems: 42
- Metrics Precedence:
best value -> AUC
Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report.
Table of Contents
Overall Results
Solver | Borda | Firsts |
---|---|---|
Optuna | 1 | 38 |
TPE | 4 | 41 |
Individual Results
sigopt/evalset/Xor(dim=9)
(1) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 0.993390 +- 0.005154 | 79.062 +- 0.223 | 2.099 +- 0.272 |
1 | TPE (study) | 0.989686 +- 0.007573 | 78.846 +- 0.655 | 0.154 +- 0.024 |
sigopt/evalset/CarromTable(dim=2)
(2) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | TPE (study) | -22.872949 +- 1.005172 | -1652.571 +- 190.729 | 0.052 +- 0.010 |
2 | Optuna (study) | -22.194564 +- 3.416137 | -1348.154 +- 352.782 | 0.514 +- 0.071 |
sigopt/evalset/DeflectedCorrugatedSpring(dim=4)
(3) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -0.717780 +- 0.182056 | -22.876 +- 16.804 | 0.974 +- 0.108 |
1 | TPE (study) | -0.727596 +- 0.196942 | -29.251 +- 19.134 | 0.082 +- 0.017 |
sigopt/evalset/McCourt07(dim=6, res=12)
(4) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | TPE (study) | -0.275000 +- 0.068550 | -5.367 +- 6.368 | 0.108 +- 0.018 |
2 | Optuna (study) | -0.227778 +- 0.064310 | -0.981 +- 8.374 | 1.447 +- 0.150 |
sigopt/evalset/Trid(dim=6)
(5) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -39.322946 +- 6.127839 | -972.224 +- 852.826 | 1.390 +- 0.141 |
1 | TPE (study) | -41.375532 +- 5.999828 | -1136.604 +- 1061.727 | 0.114 +- 0.012 |
sigopt/evalset/Hartmann3(dim=3)
(6) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -3.794874 +- 0.068767 | -268.923 +- 16.981 | 0.714 +- 0.084 |
1 | TPE (study) | -3.771731 +- 0.143582 | -266.521 +- 16.429 | 0.067 +- 0.015 |
sigopt/evalset/Rastrigin(dim=8)
(7) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 51.567655 +- 9.603779 | 5092.247 +- 559.509 | 1.890 +- 0.163 |
1 | TPE (study) | 47.929794 +- 8.504059 | 5011.361 +- 569.197 | 0.131 +- 0.008 |
sigopt/evalset/CarromTable(dim=2, int=[0])
(8) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | TPE (study) | -19.382277 +- 2.139465 | -1398.042 +- 240.191 | 0.048 +- 0.009 |
2 | Optuna (study) | -18.558809 +- 2.898384 | -1124.117 +- 355.133 | 0.546 +- 0.097 |
sigopt/evalset/Branin02(dim=2, int=[0])
(9) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 8.322043 +- 1.121514 | 906.763 +- 163.107 | 0.543 +- 0.086 |
1 | TPE (study) | 8.176882 +- 0.891681 | 898.070 +- 197.586 | 0.047 +- 0.008 |
sigopt/evalset/Exponential(dim=6)
(10) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -0.988995 +- 0.009684 | -74.520 +- 1.445 | 1.411 +- 0.160 |
2 | TPE (study) | -0.985751 +- 0.009745 | -73.532 +- 1.698 | 0.113 +- 0.014 |
sigopt/evalset/McCourt27(dim=3)
(11) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -1.115265 +- 0.290447 | -29.629 +- 27.596 | 0.736 +- 0.074 |
1 | TPE (study) | -1.181162 +- 0.392760 | -28.515 +- 20.999 | 0.065 +- 0.008 |
sigopt/evalset/Easom(dim=4)
(12) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 17.207166 +- 4.150281 | 1532.213 +- 153.864 | 0.965 +- 0.118 |
1 | TPE (study) | 16.640832 +- 4.458301 | 1513.019 +- 152.896 | 0.081 +- 0.015 |
sigopt/evalset/Michalewicz(dim=4)
(13) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -2.456921 +- 0.409687 | -154.184 +- 24.965 | 1.017 +- 0.103 |
1 | TPE (study) | -2.429811 +- 0.344868 | -151.232 +- 24.882 | 0.079 +- 0.012 |
sigopt/evalset/Sphere(dim=7)
(14) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 2.584901 +- 1.340599 | 653.296 +- 206.452 | 1.631 +- 0.149 |
1 | TPE (study) | 2.519518 +- 1.088015 | 712.224 +- 149.846 | 0.129 +- 0.017 |
sigopt/evalset/Tripod(dim=2)
(15) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 5.096237 +- 2.344442 | 1012.417 +- 305.085 | 0.494 +- 0.058 |
1 | TPE (study) | 4.703087 +- 1.725078 | 955.442 +- 243.257 | 0.050 +- 0.008 |
sigopt/evalset/Shekel05(dim=4)
(16) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -1.589587 +- 0.735620 | -69.877 +- 19.731 | 0.974 +- 0.084 |
1 | TPE (study) | -2.369999 +- 1.654154 | -102.969 +- 69.721 | 0.086 +- 0.016 |
sigopt/evalset/Ackley(dim=3)
(17) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 5.059500 +- 1.552897 | 710.526 +- 117.211 | 0.738 +- 0.102 |
1 | TPE (study) | 5.024110 +- 1.502778 | 744.546 +- 142.450 | 0.067 +- 0.021 |
sigopt/evalset/LennardJones6(dim=6)
(18) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -0.978761 +- 0.045789 | -50.342 +- 9.442 | 1.409 +- 0.147 |
1 | TPE (study) | -0.964420 +- 0.065015 | -51.227 +- 10.873 | 0.108 +- 0.014 |
sigopt/evalset/McCourt22(dim=5)
(19) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -2.578230 +- 0.242046 | -165.000 +- 23.266 | 1.210 +- 0.120 |
1 | TPE (study) | -2.707553 +- 0.254801 | -166.977 +- 15.933 | 0.099 +- 0.023 |
sigopt/evalset/Ackley(dim=11, int=[0, 1, 2])
(20) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 13.936461 +- 1.516013 | 1300.225 +- 72.129 | 2.650 +- 0.300 |
1 | TPE (study) | 14.140112 +- 1.929461 | 1290.064 +- 103.408 | 0.181 +- 0.019 |
sigopt/evalset/Mishra06(dim=2)
(21) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -1.856294 +- 0.287699 | -100.549 +- 21.900 | 0.502 +- 0.045 |
1 | TPE (study) | -1.944638 +- 0.251441 | -100.954 +- 23.131 | 0.049 +- 0.008 |
sigopt/evalset/Weierstrass(dim=3)
(22) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 13.312590 +- 0.432109 | 1113.177 +- 31.581 | 0.705 +- 0.088 |
1 | TPE (study) | 13.169722 +- 0.328912 | 1099.970 +- 24.815 | 0.066 +- 0.009 |
sigopt/evalset/Ackley(dim=5)
(23) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 8.113488 +- 1.606887 | 980.545 +- 158.876 | 1.223 +- 0.169 |
1 | TPE (study) | 8.236194 +- 1.903449 | 1001.801 +- 126.397 | 0.091 +- 0.017 |
sigopt/evalset/Bukin06(dim=2, int=[0])
(24) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 9.722000 +- 5.270652 | 1883.877 +- 525.400 | 0.551 +- 0.063 |
1 | TPE (study) | 8.347149 +- 3.900352 | 1778.613 +- 446.735 | 0.050 +- 0.009 |
sigopt/evalset/Schwefel20(dim=2, int=[0])
(25) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 2.805165 +- 1.868455 | 955.988 +- 269.244 | 0.614 +- 0.071 |
1 | TPE (study) | 3.147916 +- 1.906583 | 940.110 +- 311.947 | 0.049 +- 0.009 |
sigopt/evalset/Deb02(dim=6)
(26) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -0.745466 +- 0.058212 | -51.715 +- 3.635 | 1.418 +- 0.148 |
1 | TPE (study) | -0.731667 +- 0.071744 | -51.128 +- 4.275 | 0.107 +- 0.014 |
sigopt/evalset/Ackley(dim=11)
(27) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 14.277443 +- 1.794100 | 1315.809 +- 91.249 | 2.556 +- 0.265 |
1 | TPE (study) | 14.521596 +- 1.513862 | 1305.979 +- 98.917 | 0.179 +- 0.015 |
sigopt/evalset/Sphere(dim=7, int=[0, 1, 2, 3, 4])
(28) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 2.103150 +- 1.342227 | 698.066 +- 210.207 | 1.755 +- 0.152 |
1 | TPE (study) | 2.689469 +- 1.195182 | 795.176 +- 214.213 | 0.119 +- 0.012 |
sigopt/evalset/StyblinskiTang(dim=5)
(29) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -157.061698 +- 13.683493 | -10443.805 +- 860.943 | 1.159 +- 0.112 |
1 | TPE (study) | -159.368114 +- 13.823497 | -10983.855 +- 1194.895 | 0.091 +- 0.016 |
sigopt/evalset/Ned01(dim=2)
(30) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 0.076205 +- 0.070345 | 14.860 +- 5.824 | 0.501 +- 0.046 |
1 | TPE (study) | 0.038726 +- 0.088347 | 13.520 +- 7.614 | 0.048 +- 0.008 |
sigopt/evalset/YaoLiu(dim=5)
(31) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 20.587560 +- 5.389727 | 2416.369 +- 411.935 | 1.181 +- 0.137 |
1 | TPE (study) | 22.129447 +- 6.635147 | 2599.144 +- 393.332 | 0.099 +- 0.021 |
sigopt/evalset/Easom(dim=5)
(32) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 19.598449 +- 2.335792 | 1618.950 +- 77.894 | 1.178 +- 0.134 |
1 | TPE (study) | 19.675417 +- 2.527447 | 1599.711 +- 140.754 | 0.099 +- 0.019 |
sigopt/evalset/Ackley(dim=3, res=1)
(33) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 4.300000 +- 1.417745 | 658.700 +- 91.811 | 0.742 +- 0.118 |
1 | TPE (study) | 3.900000 +- 1.011599 | 595.333 +- 128.060 | 0.065 +- 0.009 |
sigopt/evalset/McCourt19(dim=2)
(34) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -8.461423 +- 0.131150 | -594.724 +- 32.279 | 0.531 +- 0.071 |
1 | TPE (study) | -8.506519 +- 0.097196 | -584.351 +- 34.321 | 0.050 +- 0.009 |
sigopt/evalset/Plateau(dim=2)
(35) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 30.000000 +- 0.000000 | 2386.167 +- 8.513 | 0.506 +- 0.047 |
1 | TPE (study) | 30.000000 +- 0.000000 | 2384.400 +- 8.333 | 0.049 +- 0.008 |
sigopt/evalset/McCourt01(dim=7, res=10)
(36) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 0.026667 +- 0.092856 | 21.297 +- 10.298 | 1.623 +- 0.157 |
1 | TPE (study) | 0.013333 +- 0.123108 | 21.433 +- 8.740 | 0.129 +- 0.026 |
sigopt/evalset/Shekel07(dim=4)
(37) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -2.223391 +- 0.891697 | -91.441 +- 20.872 | 0.978 +- 0.083 |
1 | TPE (study) | -2.352949 +- 1.194168 | -95.508 +- 33.456 | 0.084 +- 0.015 |
sigopt/evalset/McCourt06(dim=5, res=12)
(38) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 2.847222 +- 0.048512 | 234.444 +- 4.336 | 1.185 +- 0.126 |
1 | TPE (study) | 2.844444 +- 0.041574 | 234.839 +- 5.059 | 0.097 +- 0.014 |
sigopt/evalset/Sargan(dim=2, int=[0])
(39) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 0.000881 +- 0.002711 | 73.963 +- 37.908 | 0.616 +- 0.071 |
1 | TPE (study) | 0.056329 +- 0.301516 | 79.598 +- 53.628 | 0.048 +- 0.013 |
sigopt/evalset/McCourt02(dim=7)
(40) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | -2.686687 +- 0.026472 | -203.463 +- 4.287 | 1.677 +- 0.165 |
1 | TPE (study) | -2.691230 +- 0.027726 | -204.052 +- 3.832 | 0.125 +- 0.018 |
sigopt/evalset/Rastrigin(dim=8, res=0.1)
(41) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | TPE (study) | 40.000000 +- 9.309493 | 4412.000 +- 698.185 | 0.141 +- 0.017 |
2 | Optuna (study) | 46.000000 +- 10.198039 | 4801.333 +- 713.787 | 1.896 +- 0.163 |
sigopt/evalset/Schwefel20(dim=2)
(42) Problem:Ranking | Solver | Best (avg +- sd) | AUC (avg +- sd) | Elapsed (avg +- sd) |
---|---|---|---|---|
1 | Optuna (study) | 3.066478 +- 1.381306 | 952.353 +- 255.962 | 0.583 +- 0.072 |
1 | TPE (study) | 2.518236 +- 1.449889 | 1103.380 +- 314.851 | 0.045 +- 0.005 |
Solvers
ID: 487e04184b5eeb61450126dfd6552b09ffc08402cf3183770d239fb094201cf2
recipe:
{
"optuna": {}
}
specification:
{
"name": "Optuna",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.1.0, kurobako-py=0.1.8"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
}
ID: cd5a17022fd1fec0554d9192671f1901113ace2492e20d59ac0417f3666c4618
recipe:
{
"command": {
"path": "cargo",
"args": [
"run",
"--release",
"--example",
"tpe-solver"
]
}
}
specification:
{
"name": "TPE",
"attrs": {},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONCURRENT"
]
}
Problems
ID: 762d606fd111289ffacaa9410ef618348513d70d9fe903e5d71a60978c28d213
recipe:
{
"sigopt": {
"name": "ACKLEY",
"dim": 11
}
}
specification:
{
"name": "sigopt/evalset/Ackley(dim=11)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p6",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p7",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p8",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p9",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p10",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 5711ea99766d928a6218dbeaadd93bd28e82a9c3b19b0eac5b64e01b7f252fac
recipe:
{
"sigopt": {
"name": "ACKLEY",
"dim": 11,
"int": [
0,
1,
2
]
}
}
specification:
{
"name": "sigopt/evalset/Ackley(dim=11, int=[0, 1, 2])",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "DISCRETE",
"low": -10,
"high": 30
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "DISCRETE",
"low": -10,
"high": 30
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "DISCRETE",
"low": -10,
"high": 30
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p6",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p7",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p8",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p9",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p10",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 48bc49268474110e0c2a181bb78990c6dbd331d61fb6e082d3bd095d4de815e2
recipe:
{
"sigopt": {
"name": "ACKLEY",
"dim": 3
}
}
specification:
{
"name": "sigopt/evalset/Ackley(dim=3)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: bc80da85f8186f371a2a127d82ff7136379712e311358c60678085830effc226
recipe:
{
"sigopt": {
"name": "ACKLEY",
"dim": 3,
"res": 1.0
}
}
specification:
{
"name": "sigopt/evalset/Ackley(dim=3, res=1)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 66cda488c56779bfd9d3bb1203160dce3d784c9bc293daabacf0509790e43aed
recipe:
{
"sigopt": {
"name": "ACKLEY",
"dim": 5
}
}
specification:
{
"name": "sigopt/evalset/Ackley(dim=5)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 2318f2882267c2f27d174954c9976ade13be9e978006ce076c6dac22fa7c8463
recipe:
{
"sigopt": {
"name": "BRANIN02",
"dim": 2,
"int": [
0
]
}
}
specification:
{
"name": "sigopt/evalset/Branin02(dim=2, int=[0])",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "DISCRETE",
"low": -5,
"high": 15
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 15.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 6ab293911d0424ebb16aa03a9185f16e62c9023da1c0ccbf4353b0433fa42d10
recipe:
{
"sigopt": {
"name": "BUKIN06",
"dim": 2,
"int": [
0
]
}
}
specification:
{
"name": "sigopt/evalset/Bukin06(dim=2, int=[0])",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "DISCRETE",
"low": -15,
"high": -5
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -3.0,
"high": 3.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 0dcb70363493ed100a24a44a12d3d347aa1a0903a18e1ed8abe003df7a74355b
recipe:
{
"sigopt": {
"name": "CARROM_TABLE",
"dim": 2
}
}
specification:
{
"name": "sigopt/evalset/CarromTable(dim=2)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 20c7917b2603e9d2e6928ad861cc2b8edf702d96f5759ef27ca85c11335edf16
recipe:
{
"sigopt": {
"name": "CARROM_TABLE",
"dim": 2,
"int": [
0
]
}
}
specification:
{
"name": "sigopt/evalset/CarromTable(dim=2, int=[0])",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "DISCRETE",
"low": -10,
"high": 10
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 6fd3e8ef60eec3daf630366f99491d35b6f05a4163ebb6d0b4db74926bc42ce2
recipe:
{
"sigopt": {
"name": "DEB02",
"dim": 6
}
}
specification:
{
"name": "sigopt/evalset/Deb02(dim=6)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 1210ccbbf66a139a961e1392f8cc35351922a8f089a440ccd54af4577e5f368b
recipe:
{
"sigopt": {
"name": "DEFLECTED_CORRUGATED_SPRING",
"dim": 4
}
}
specification:
{
"name": "sigopt/evalset/DeflectedCorrugatedSpring(dim=4)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 7.5
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 7.5
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 7.5
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 7.5
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 30f46f4f59c9a6b9ba33e0dadd611080e606ff70a844b2c68bfeb66a7a07e405
recipe:
{
"sigopt": {
"name": "EASOM",
"dim": 4
}
}
specification:
{
"name": "sigopt/evalset/Easom(dim=4)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -100.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -100.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -100.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -100.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: a39b57cec0151c892256bc8386f43dc15e83c2a985c9761fbf46f0abc541307e
recipe:
{
"sigopt": {
"name": "EASOM",
"dim": 5
}
}
specification:
{
"name": "sigopt/evalset/Easom(dim=5)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -100.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -100.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -100.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -100.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": -100.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 29849239fd4b7b5d4543cec4bc2cbb857fa41fa8b4147a765850b43409317dc1
recipe:
{
"sigopt": {
"name": "EXPONENTIAL",
"dim": 6
}
}
specification:
{
"name": "sigopt/evalset/Exponential(dim=6)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -0.7,
"high": 0.2
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -0.7,
"high": 0.2
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -0.7,
"high": 0.2
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -0.7,
"high": 0.2
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": -0.7,
"high": 0.2
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": -0.7,
"high": 0.2
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 1e08466d41a46890e37413c5f989e30c6f2155b3e3e99721997e6d9ed29148d5
recipe:
{
"sigopt": {
"name": "HARTMANN3",
"dim": 3
}
}
specification:
{
"name": "sigopt/evalset/Hartmann3(dim=3)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 4cc33f4e2ff5625738795af29a4d94fa607d5f5949ece8ad44b73b1e63b63339
recipe:
{
"sigopt": {
"name": "LENNARD_JONES6",
"dim": 6
}
}
specification:
{
"name": "sigopt/evalset/LennardJones6(dim=6)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -3.0,
"high": 3.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -3.0,
"high": 3.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -3.0,
"high": 3.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -3.0,
"high": 3.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": -3.0,
"high": 3.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": -3.0,
"high": 3.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: ccf73084ef5dbe3746e1d5252d6bfaa643bc1ece3358a4c77decf923d8e0facb
recipe:
{
"sigopt": {
"name": "MC_COURT01",
"dim": 7,
"res": 10.0
}
}
specification:
{
"name": "sigopt/evalset/McCourt01(dim=7, res=10)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p6",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: e7895b7bb5dac94288be96e61ad121d23e185003eaefd87ba5e1023a6132104e
recipe:
{
"sigopt": {
"name": "MC_COURT02",
"dim": 7
}
}
specification:
{
"name": "sigopt/evalset/McCourt02(dim=7)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p6",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: cff13c7e9a01ac1b8cce1a957f7caa7cc6d438ced9a8c25b658215794acc6d92
recipe:
{
"sigopt": {
"name": "MC_COURT06",
"dim": 5,
"res": 12.0
}
}
specification:
{
"name": "sigopt/evalset/McCourt06(dim=5, res=12)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 1464bdea4ea2f345666eae6ecdda641b6a196281174f5ba8007a8e8a2bec532e
recipe:
{
"sigopt": {
"name": "MC_COURT07",
"dim": 6,
"res": 12.0
}
}
specification:
{
"name": "sigopt/evalset/McCourt07(dim=6, res=12)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: c402d6ef019d823cfda5127b120f2bd5eb3e021edc112118ae0c9f07e72de789
recipe:
{
"sigopt": {
"name": "MC_COURT19",
"dim": 2
}
}
specification:
{
"name": "sigopt/evalset/McCourt19(dim=2)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 541f33a97b45aa4a10f3197b56751eb385ded69f15d40453f8b7dee5ba7882a8
recipe:
{
"sigopt": {
"name": "MC_COURT22",
"dim": 5
}
}
specification:
{
"name": "sigopt/evalset/McCourt22(dim=5)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 2fef32d714633c85c412e13e086a1ec8df60117de097a4209b590376b1787729
recipe:
{
"sigopt": {
"name": "MC_COURT27",
"dim": 3
}
}
specification:
{
"name": "sigopt/evalset/McCourt27(dim=3)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 3902a3f083b3cb4c95db2c0166a0a337063e4555d7a2f9d2d31c367d32758f4e
recipe:
{
"sigopt": {
"name": "MICHALEWICZ",
"dim": 4
}
}
specification:
{
"name": "sigopt/evalset/Michalewicz(dim=4)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 3.141592653589793
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 3.141592653589793
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 3.141592653589793
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 3.141592653589793
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 59c429b4a300b87b138a006f1128ff1d16e2c50a9c909a88ef514a10e3c80148
recipe:
{
"sigopt": {
"name": "MISHRA06",
"dim": 2
}
}
specification:
{
"name": "sigopt/evalset/Mishra06(dim=2)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 862877d4e1f14c9bea4f924a5c6366938cc8e2aadd70df465af0586d67a99f8b
recipe:
{
"sigopt": {
"name": "NED01",
"dim": 2
}
}
specification:
{
"name": "sigopt/evalset/Ned01(dim=2)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: c6e62d2a584679ad6fcdec6abc3bab8ab394e333a01e662053a28c2837ef57a9
recipe:
{
"sigopt": {
"name": "PLATEAU",
"dim": 2
}
}
specification:
{
"name": "sigopt/evalset/Plateau(dim=2)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -2.34,
"high": 5.12
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -2.34,
"high": 5.12
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 1eb7796f1b2d5f244bfd8eefd6b3d97091d460e9ab56c61d71a29ad15e7fa0da
recipe:
{
"sigopt": {
"name": "RASTRIGIN",
"dim": 8
}
}
specification:
{
"name": "sigopt/evalset/Rastrigin(dim=8)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 2.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 2.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -2.0,
"high": 5.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -2.0,
"high": 5.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 2.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 2.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p6",
"range": {
"type": "CONTINUOUS",
"low": -2.0,
"high": 5.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p7",
"range": {
"type": "CONTINUOUS",
"low": -2.0,
"high": 5.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: ec359d6b8722b456204bb2f41274079d5c5c0e08a6b3db98a762d3501a380e96
recipe:
{
"sigopt": {
"name": "RASTRIGIN",
"dim": 8,
"res": 0.1
}
}
specification:
{
"name": "sigopt/evalset/Rastrigin(dim=8, res=0.1)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 2.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 2.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -2.0,
"high": 5.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -2.0,
"high": 5.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 2.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 2.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p6",
"range": {
"type": "CONTINUOUS",
"low": -2.0,
"high": 5.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p7",
"range": {
"type": "CONTINUOUS",
"low": -2.0,
"high": 5.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: e014fb18e27703930d93dd7e7ee8178ce5ffad97027d013fac90c263049c70d7
recipe:
{
"sigopt": {
"name": "SARGAN",
"dim": 2,
"int": [
0
]
}
}
specification:
{
"name": "sigopt/evalset/Sargan(dim=2, int=[0])",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "DISCRETE",
"low": -2,
"high": 4
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -2.0,
"high": 4.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: fcbd60ae002525d084f788a792305d491f32a61ac99ac711a9cfe9d1860f8d34
recipe:
{
"sigopt": {
"name": "SCHWEFEL20",
"dim": 2
}
}
specification:
{
"name": "sigopt/evalset/Schwefel20(dim=2)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -60.0,
"high": 100.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -60.0,
"high": 100.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 6de30105fa47b8ecbda30c3676ee059bcfcc221b82a83736bb8b479f4559da6a
recipe:
{
"sigopt": {
"name": "SCHWEFEL20",
"dim": 2,
"int": [
0
]
}
}
specification:
{
"name": "sigopt/evalset/Schwefel20(dim=2, int=[0])",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "DISCRETE",
"low": -60,
"high": 100
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -60.0,
"high": 100.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 47fe6e07816771591c8ea2640dea44bce93ff9171060ac4c3ece8b1c71a32aa2
recipe:
{
"sigopt": {
"name": "SHEKEL05",
"dim": 4
}
}
specification:
{
"name": "sigopt/evalset/Shekel05(dim=4)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -0.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -0.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -0.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -0.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: cd5ee5f8e7c0328b28837d220987f3ed318887b201e2dccd24559937f37c215a
recipe:
{
"sigopt": {
"name": "SHEKEL07",
"dim": 4
}
}
specification:
{
"name": "sigopt/evalset/Shekel07(dim=4)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -0.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -0.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -0.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -0.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 429f7ada6a8f5648aee7930fdf1f3af0807ba052ca921cac32dc102c3d6d32f2
recipe:
{
"sigopt": {
"name": "SPHERE",
"dim": 7
}
}
specification:
{
"name": "sigopt/evalset/Sphere(dim=7)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 2.12
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 2.12
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 2.12
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 2.12
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 2.12
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 2.12
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p6",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 2.12
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 7a9b62682ddee5ac08c93669255954f154b4bae095dc877c2b478b7d20f9b45d
recipe:
{
"sigopt": {
"name": "SPHERE",
"dim": 7,
"int": [
0,
1,
2,
3,
4
]
}
}
specification:
{
"name": "sigopt/evalset/Sphere(dim=7, int=[0, 1, 2, 3, 4])",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "DISCRETE",
"low": -5,
"high": 2
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "DISCRETE",
"low": -5,
"high": 2
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "DISCRETE",
"low": -5,
"high": 2
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "DISCRETE",
"low": -5,
"high": 2
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "DISCRETE",
"low": -5,
"high": 2
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 2.12
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p6",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 2.12
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 847114b901d551887b3bb6e0686324852e2cc8c4fe1ac75e8ff018da13b1023e
recipe:
{
"sigopt": {
"name": "STYBLINSKI_TANG",
"dim": 5
}
}
specification:
{
"name": "sigopt/evalset/StyblinskiTang(dim=5)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 5.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 5.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 5.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 5.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 5.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 15ca748208253e4a2e35adf06a8f7feb49188210b02e1cd08702d54c9267a4f6
recipe:
{
"sigopt": {
"name": "TRID",
"dim": 6
}
}
specification:
{
"name": "sigopt/evalset/Trid(dim=6)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": 0.0,
"high": 20.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 458dd11a95505ddb3a8d96d492dbc35b0de444d84fe0bf3fef739d02baeaf425
recipe:
{
"sigopt": {
"name": "TRIPOD",
"dim": 2
}
}
specification:
{
"name": "sigopt/evalset/Tripod(dim=2)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -100.0,
"high": 100.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -100.0,
"high": 100.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 6396ba82fa5de7995ce66e0eed9448e5882508432c8b324d52c5f11a79f16a78
recipe:
{
"sigopt": {
"name": "WEIERSTRASS",
"dim": 3
}
}
specification:
{
"name": "sigopt/evalset/Weierstrass(dim=3)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -0.5,
"high": 0.2
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -0.5,
"high": 0.2
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -0.5,
"high": 0.2
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: 099c4ef27c777d65a669d88cd599c9e679f956bd04859ed85d2c9403ec82200c
recipe:
{
"sigopt": {
"name": "XOR",
"dim": 9
}
}
specification:
{
"name": "sigopt/evalset/Xor(dim=9)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -1.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -1.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -1.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -1.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": -1.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p5",
"range": {
"type": "CONTINUOUS",
"low": -1.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p6",
"range": {
"type": "CONTINUOUS",
"low": -1.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p7",
"range": {
"type": "CONTINUOUS",
"low": -1.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p8",
"range": {
"type": "CONTINUOUS",
"low": -1.0,
"high": 1.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
ID: a0d7aa2cea146419075791ef31a3e4b50dcefbca3e9b2c52d766f0b000607e67
recipe:
{
"sigopt": {
"name": "YAO_LIU",
"dim": 5
}
}
specification:
{
"name": "sigopt/evalset/YaoLiu(dim=5)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.10"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 2.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 2.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p2",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 2.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p3",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 2.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p4",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 2.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
}
Studies
ID: fbc2ddeb5d704422b08bce6880cb7846605a47643fb54981497602f9ac841d8a
- problem: sigopt/evalset/Ackley(dim=11)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: ba15b8dac88bcacef7d931cbbc0e78c34cfbbd1dee733ab492eb02164d602544
- problem: sigopt/evalset/Ackley(dim=11)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: 266df7c20ab06d059b7148e715d6114b3b999a99a72b20cf50743d6a050f284a
- problem: sigopt/evalset/Ackley(dim=11, int=[0, 1, 2])
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: c53a30cf85d11e6f300fd7a542807a272713a199726baacf2dced62d9864c4e7
- problem: sigopt/evalset/Ackley(dim=11, int=[0, 1, 2])
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: 62f6dd2b2d5f7230ad8e9414f3cb5c6b9b1e95e6eb0fadc08ce7bf5d597033c2
- problem: sigopt/evalset/Ackley(dim=3)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: 718b5e99f75ee31c2e31da79af467600fb753bb14bbac429ac41fab12f3ebaaa
- problem: sigopt/evalset/Ackley(dim=3)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: 6bba607f548c2dba45f37c50ee76c66361ccc86e294f8efcaf1098b401dc96b5
- problem: sigopt/evalset/Ackley(dim=3, res=1)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: ce060de815ae7f252a2ad4fb0b897acc32c89c3ca71b241d869f50851ed8acf1
- problem: sigopt/evalset/Ackley(dim=3, res=1)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: 2309623e53c7582bf49fcbba8ce8ccf8043730725d8537a8717ccb1ae9b7f061
- problem: sigopt/evalset/Ackley(dim=5)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: ca345964f1864c0c20a02638655c9eaf3ff65f5c490c81ed23cdd208ee45d2b8
- problem: sigopt/evalset/Ackley(dim=5)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: c3e387959b4b0679916f6468ec6f8ff15692f6240a75d5735ce6c762f0452e96
- problem: sigopt/evalset/Branin02(dim=2, int=[0])
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: 864721f31b1c405aec41d8b96455aa16bf6c17f875d7ded242798d3b47a20f66
- problem: sigopt/evalset/Branin02(dim=2, int=[0])
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: f95ae1a5b1536be196364428c452ca6deb4eb0f94bb7f9c591df983f922e8c39
- problem: sigopt/evalset/Bukin06(dim=2, int=[0])
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: 4e772b3309d174340c7086d87533f4d527269b26814d94fdc2d7b494583a226c
- problem: sigopt/evalset/Bukin06(dim=2, int=[0])
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: d7670eedc4a9ba469ebb8a9e552fe392d331ca2241d11892f48f1d5fce4365d8
- problem: sigopt/evalset/CarromTable(dim=2)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: 0cfbe87abeab8c28a03a6f1b4f3f04c7d5d885ec919cfa82e98686e38ec357bc
- problem: sigopt/evalset/CarromTable(dim=2)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: 5edee370b13ca497831aba9541e67c40963dc92568c6b31664320cc37d9f416f
- problem: sigopt/evalset/CarromTable(dim=2, int=[0])
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: 64558e857bab80a017c8c4c7fd8b4d09f57a8c29c0a46a5a5519e6161ff8070b
- problem: sigopt/evalset/CarromTable(dim=2, int=[0])
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: 72ab536fb038676aaf065c9e1e4e65a4ab6530aa11134b823dd88bbbfa1deebb
- problem: sigopt/evalset/Deb02(dim=6)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: 29db2d0a0b10e6e1f45e270f9ecec8443b58ef7c9557398e1afe0365819b6537
- problem: sigopt/evalset/Deb02(dim=6)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: fdc6266cb554357582d89eaabaff61afda2033708b6afe2af41ef7deee03ccfb
- problem: sigopt/evalset/DeflectedCorrugatedSpring(dim=4)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: 1af22482a0c849a5ab996bc5811347021d5a3352d14a4f50b80b43ae7fa54148
- problem: sigopt/evalset/DeflectedCorrugatedSpring(dim=4)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: e2fcf7160f1f004ae3bf3d08427bac659d306dd078a7942f26f9b71d45f9476a
- problem: sigopt/evalset/Easom(dim=4)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: 66cafdadd66fa95cb1091980b4508e81ef165e42538acb3db9e560d3d05ce48c
- problem: sigopt/evalset/Easom(dim=4)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: b5087592050024f2d1b5fe2b584a37009e1bb14062943987a8bd892c92e00689
- problem: sigopt/evalset/Easom(dim=5)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: dd65dd8919b645f06649fd4f3b4354a8ed1f98ebcee25c9f24ba1d1a6d1f764f
- problem: sigopt/evalset/Easom(dim=5)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: 026cf006db02205edafefa0373d35c3d21f9bf5f73aaf9b0140ad8b7ea667dac
- problem: sigopt/evalset/Exponential(dim=6)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: d375e2076e80276b5f2e1e08767e8bc581c22d9249671af3301934a309dd08f9
- problem: sigopt/evalset/Exponential(dim=6)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: 9ed0c9fa5fa1212cf8363517613dead2b412c6255fb4df0c4d577dee87a67dad
- problem: sigopt/evalset/Hartmann3(dim=3)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: 4dcf232ef87b9334534d5e82a45676ac37ff6ad22a7a5e7ec8c955e19aa243e4
- problem: sigopt/evalset/Hartmann3(dim=3)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: f4d9d6052823cc44a52b6309b4dfdcf391b9d2118644e934cdead54394327196
- problem: sigopt/evalset/LennardJones6(dim=6)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: c4920d5bb8f157889bf1fd452f440bf027e50b9a9a2462b243f66f6981f25aa2
- problem: sigopt/evalset/LennardJones6(dim=6)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: 69425670f741004875a1b3cfa90d2b57e0432e009214465d2f8172edacd8f79c
- problem: sigopt/evalset/McCourt01(dim=7, res=10)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: 1eb90774e8680c24522fd46f93f5ae39dbff60ca5759a94a988e97ef89449a6b
- problem: sigopt/evalset/McCourt01(dim=7, res=10)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: ea03ac7ecf4c4cc8ed9913e359db54d805dcee67fbc0b9d8bca723f8c8839856
- problem: sigopt/evalset/McCourt02(dim=7)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: 306fc33c8ef4f94b223a850316c6f59551bddb5f05fed877d341d712c6d4a683
- problem: sigopt/evalset/McCourt02(dim=7)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: ad9e6c1993a0232118d33bbb31a712e56766dc308ff424744313fdd729cc7987
- problem: sigopt/evalset/McCourt06(dim=5, res=12)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: f64db0f5f225d9dd15d19bcf8fe0f3c9f5184fd15926e4efc686a7194f85f005
- problem: sigopt/evalset/McCourt06(dim=5, res=12)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: 08b8555de27d6e481943fe427ca3bd548e3febaf37311680a7b272c70e3710c2
- problem: sigopt/evalset/McCourt07(dim=6, res=12)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: bd31ea059a308f9daca40989c25139a56dae4a077c87f63003514c10fff604d5
- problem: sigopt/evalset/McCourt07(dim=6, res=12)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: 43fe49690322ba402c8512d02278478019be3b542a3a8cb76ce7d828c9cc8b74
- problem: sigopt/evalset/McCourt19(dim=2)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: e8f7b9aca5c3129c5d48e1cb0c9aefd7bb8637f565070276f45ee523e47d48dc
- problem: sigopt/evalset/McCourt19(dim=2)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: a7be5cdfec8412e2be11fd6d074af5adc0fd65102742e24b02347d49afb5ab69
- problem: sigopt/evalset/McCourt22(dim=5)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: 4b7f5baef55e5881f15fae9f06ccb9e6b41fb0847ea63ef038d4ad67cd22dad5
- problem: sigopt/evalset/McCourt22(dim=5)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: 37797eb69370ee72e477422ed1963680255db0d64419937695766041fb0765e2
- problem: sigopt/evalset/McCourt27(dim=3)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: acce21aa5529dab14f15c43c757d89ec9fb45c2d4dec4eee376a046047e32b8c
- problem: sigopt/evalset/McCourt27(dim=3)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: 0d891783e7095abbccb7482be7fa62e6895784b943f1c0d14f0be4fe77178bff
- problem: sigopt/evalset/Michalewicz(dim=4)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: 5915ad3448a2a2ab278194a439856b15a49c27ee5b187ef42f9c4200e7782171
- problem: sigopt/evalset/Michalewicz(dim=4)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: 882afc4f976f3805433954c5ab29410fe979ee8a44342e5c62a115ae1af01bf3
- problem: sigopt/evalset/Mishra06(dim=2)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: 2243e1792beca103bc02555253233e6233b72c418dac2348a37761bf802f994e
- problem: sigopt/evalset/Mishra06(dim=2)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: 78c00be95fb6dd5e1784950fd52c80cb58e49dfa6b63ffea0a49a9a7ba314461
- problem: sigopt/evalset/Ned01(dim=2)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: 0737bbed2e55bfb529e5a2b9a6bbb71946c3f433294ec0a154769426826148ec
- problem: sigopt/evalset/Ned01(dim=2)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: 20b0e223a47eb7b1925d3cec82659ee9489d03be3fd99e4ae07dd48d80a056c9
- problem: sigopt/evalset/Plateau(dim=2)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: c54cb9323c118f67c087054e7f5dfa2b9a50f796f7cb8d12203fe3664512cf74
- problem: sigopt/evalset/Plateau(dim=2)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: e3a02959393250bbfb7dcca21ec305ecc1969b0835e9942fd24deda98d98302a
- problem: sigopt/evalset/Rastrigin(dim=8)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: 85259cf4fb9177475d5a6228f82ced84c6074accaccee41fb1f45c1d1c0e5de8
- problem: sigopt/evalset/Rastrigin(dim=8)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: a6eb383b7fd8da1bd614a548a3666c76600e7bdd8afb3d67d436c5ff6ad6d24d
- problem: sigopt/evalset/Rastrigin(dim=8, res=0.1)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: 60b4a33d8fed5653aac44cec59c1f37310378f30660d7563944b89389ee96957
- problem: sigopt/evalset/Rastrigin(dim=8, res=0.1)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: 5df8a6762384448d08b062d3307ad01f85855509008ea8935a82f2a0f1a9a5c9
- problem: sigopt/evalset/Sargan(dim=2, int=[0])
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: 72028594becc17af1f68e37512930c5af2bf5930129450b07b836b32b1adcae8
- problem: sigopt/evalset/Sargan(dim=2, int=[0])
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: c643a2192933fcf05692233098dccab54405faa23830adf3310cb2431a10359c
- problem: sigopt/evalset/Schwefel20(dim=2)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: d9b64d593a07ce986390ae55de660fb982e4ad9f879029ee5af34c231a22a9a0
- problem: sigopt/evalset/Schwefel20(dim=2)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: 317c2fafbadb5979c56e237b46b4b11b7fdab4ed72caf7084d0551969c4fc3f3
- problem: sigopt/evalset/Schwefel20(dim=2, int=[0])
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: f23036896292fe1b2573a8ae11720e63e4f619aa9985f92bb11d02295e5f99c9
- problem: sigopt/evalset/Schwefel20(dim=2, int=[0])
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: d7e1ee134d37455ff3eca3d41b4d83dbca364e5026a60c36e73c71e9c9da9621
- problem: sigopt/evalset/Shekel05(dim=4)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: ab6073ebc902618a8a025fd5e668746b59bb853f533a3cdbd7e417039fe5528c
- problem: sigopt/evalset/Shekel05(dim=4)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: 69289af9474d8811e36c078810894fdbfe71eec5e64d1e69bd61b59f2c5a4b6d
- problem: sigopt/evalset/Shekel07(dim=4)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: 62dbb33e0bf3b3cf74c3699625f91b49f46186644d0f09bc7d67bd7b0201a21f
- problem: sigopt/evalset/Shekel07(dim=4)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: 49338d0a7613afce6f09a487ea78dfb0dc87fd1dcf18aa76adf78433e03cd3dc
- problem: sigopt/evalset/Sphere(dim=7)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: 5bd4135f33cbec499f330f86ab5453360b13b85bf6d79913688bedd606b608b8
- problem: sigopt/evalset/Sphere(dim=7)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: 93b128d2407b4388e51ebe19e9eadc07443bab174bf60e484ccbe66fe6044316
- problem: sigopt/evalset/Sphere(dim=7, int=[0, 1, 2, 3, 4])
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: ccb569defd50efee4eafa191d836ac577a1a0c1a655987faaa00a503abde74ea
- problem: sigopt/evalset/Sphere(dim=7, int=[0, 1, 2, 3, 4])
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: 8f1ec9242c699bf1a5e2dbc22c861c16610f08945f7b0acdd8dfc5408ec2fd84
- problem: sigopt/evalset/StyblinskiTang(dim=5)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: 45e74efb75dc734c4ac0198a47c0155bdbebca05b837c09482f04d2d51905f75
- problem: sigopt/evalset/StyblinskiTang(dim=5)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: f3b041e8630d5e7f5625f2a1767ec7acd8f5d238fb85218e7d2640dac471f6b3
- problem: sigopt/evalset/Trid(dim=6)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: 11f2f5fbdc24ea60fad3d5c285c93856b35142e4b9454d1d0dae668dd44b879f
- problem: sigopt/evalset/Trid(dim=6)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: c06a343948dfbc04a30e0370894e7d603928d32a73465990a618fd45db78c6bf
- problem: sigopt/evalset/Tripod(dim=2)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: 38ad73a9f2a6fbbec8cbd3a2dcbd2ec704c3dc938dd2327cf8bc8ffab84d88b1
- problem: sigopt/evalset/Tripod(dim=2)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: 629dcac5341c2fd9fc160fca4a1739f0caac080cd2483223e1edd2fd91387dd4
- problem: sigopt/evalset/Weierstrass(dim=3)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: e49c40b858250805da5a2c737998902974e595b3ed7bec471383b27bd463744b
- problem: sigopt/evalset/Weierstrass(dim=3)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: 1cfe6da4632231dec7f8f3281d600a9453da184c045f04d9ff79aca6b90154ae
- problem: sigopt/evalset/Xor(dim=9)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: 21f47fa1d011900fcd818ec3e529cf71b0e92a491b8fee271db18a52f34d3d3c
- problem: sigopt/evalset/Xor(dim=9)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1
ID: 366f5787b13521ee799bc560d165b88ab919ee584084ea6ef722e40c006befa7
- problem: sigopt/evalset/YaoLiu(dim=5)
- solver: Optuna
- budget: 80
- repeats: 30
- concurrency: 1
ID: 8aa911aade6af58b4d3c21f721f32d5f3139ecac108f63ef6c4194f495c28f9a
- problem: sigopt/evalset/YaoLiu(dim=5)
- solver: TPE
- budget: 80
- repeats: 30
- concurrency: 1