Skip to content

Instantly share code, notes, and snippets.

@sipa
Last active September 22, 2023 08:22
Show Gist options
  • Star 15 You must be signed in to star a gist
  • Fork 2 You must be signed in to fork a gist
  • Save sipa/c65665fc360ca7a176a6 to your computer and use it in GitHub Desktop.
Save sipa/c65665fc360ca7a176a6 to your computer and use it in GitHub Desktop.
Block size according to technological growth.

Published as BIP 103

@jtoomim
Copy link

jtoomim commented Oct 25, 2015

The 17.7% figure appears to come from sources like http://rusty.ozlabs.org/?p=493. It's worth noting that most of these metrics aggregate mobile bandwidth and fixed-line bandwidth. As mobile devices' share of total internet usage has been increasing dramatically over the last few years, and since mobile devices are much slower than fixed-line devices, this pushes the estimates down considerably. Examining just fixed-line devices, such as in https://en.wikipedia.org/wiki/Internet_traffic#Global_Internet_traffic, results in estimates closer to 50% per year growth.

@eragmus
Copy link

eragmus commented Apr 10, 2016

@jtoomim

From 2014-2019, Cisco data projects 16%/year increase in global fixed bandwidth speed, and 8-11%/year increase in global mobile bandwidth speed (smartphones and tablets).

Fixed:
http://i.imgur.com/wPXnpOc.png

Mobile:
http://i.imgur.com/ECzCjrq.png


Source:
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.html

@sesam
Copy link

sesam commented Mar 18, 2017

Now after headers first and various thin blocks, maybe it's time to forget bandwidth and focus on latency, packet loss and block verification which seem to still be the narrowest bottlenecks.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment