Skip to content

Instantly share code, notes, and snippets.

@sleebapaul
Created July 18, 2017 16:59
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save sleebapaul/8924b8a48b1fb17892448130eb9370f6 to your computer and use it in GitHub Desktop.
Save sleebapaul/8924b8a48b1fb17892448130eb9370f6 to your computer and use it in GitHub Desktop.
Training char_rnn by Andrej Karpathy on first chapter of Genesis
"""
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
BSD License
"""
from __future__ import print_function
import numpy as np
# data I/O
data = open('input.txt', 'r').read() # should be simple plain text file
chars = list(set(data))
data_size, vocab_size = len(data), len(chars)
print('data has %d characters, %d unique.' % (data_size, vocab_size))
char_to_ix = {ch: i for i, ch in enumerate(chars)}
ix_to_char = {i: ch for i, ch in enumerate(chars)}
# hyperparameters
hidden_size = 100 # size of hidden layer of neurons
seq_length = 25 # number of steps to unroll the RNN for
learning_rate = 1e-1
# model parameters
Wxh = np.random.randn(hidden_size, vocab_size) * 0.01 # input to hidden
Whh = np.random.randn(hidden_size, hidden_size) * 0.01 # hidden to hidden
Why = np.random.randn(vocab_size, hidden_size) * 0.01 # hidden to output
bh = np.zeros((hidden_size, 1)) # hidden bias
by = np.zeros((vocab_size, 1)) # output bias
def lossFun(inputs, targets, hprev):
"""
inputs,targets are both list of integers.
hprev is Hx1 array of initial hidden state
returns the loss, gradients on model parameters, and last hidden state
"""
xs, hs, ys, ps = {}, {}, {}, {}
hs[-1] = np.copy(hprev)
loss = 0
# forward pass
for t in range(len(inputs)):
xs[t] = np.zeros((vocab_size, 1)) # encode in 1-of-k representation
xs[t][inputs[t]] = 1
hs[t] = np.tanh(np.dot(Wxh, xs[t]) + np.dot(Whh,
hs[t - 1]) + bh) # hidden state
# unnormalized log probabilities for next chars
ys[t] = np.dot(Why, hs[t]) + by
# probabilities for next chars
ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t]))
loss += -np.log(ps[t][targets[t], 0]) # softmax (cross-entropy loss) (negative log of cross entropy)
# backward pass: compute gradients going backwards
dWxh, dWhh, dWhy = np.zeros_like(
Wxh), np.zeros_like(Whh), np.zeros_like(Why)
dbh, dby = np.zeros_like(bh), np.zeros_like(by)
dhnext = np.zeros_like(hs[0])
for t in reversed(range(len(inputs))):
dy = np.copy(ps[t])
# backprop into y. see http://cs231n.github.io/neural-networks-case-study/#grad if confused here
dy[targets[t]] -= 1
dWhy += np.dot(dy, hs[t].T)
dby += dy
dh = np.dot(Why.T, dy) + dhnext # backprop into h
dhraw = (1 - hs[t] * hs[t]) * dh # backprop through tanh nonlinearity
dbh += dhraw
dWxh += np.dot(dhraw, xs[t].T)
dWhh += np.dot(dhraw, hs[t - 1].T)
dhnext = np.dot(Whh.T, dhraw)
for dparam in [dWxh, dWhh, dWhy, dbh, dby]:
# clip to mitigate exploding gradients
np.clip(dparam, -5, 5, out=dparam)
return loss, dWxh, dWhh, dWhy, dbh, dby, hs[len(inputs) - 1]
def sample(h, seed_ix, n):
"""
sample a sequence of integers from the model
h is memory state, seed_ix is seed letter for first time step
"""
x = np.zeros((vocab_size, 1))
x[seed_ix] = 1 # one hot encoding
ixes = []
for t in range(n):
h = np.tanh(np.dot(Wxh, x) + np.dot(Whh, h) + bh)
y = np.dot(Why, h) + by
p = np.exp(y) / np.sum(np.exp(y))
# ix = np.random.choice(range(vocab_size), p=p.ravel())
# How this step gives a validation of generating the next letter is not lucid
# Instead using max of the softmax probablity would be more appropriate
ix = p.argmax()
x = np.zeros((vocab_size, 1))
x[ix] = 1
ixes.append(ix)
return ixes
n, p = 0, 0
mWxh, mWhh, mWhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why)
mbh, mby = np.zeros_like(bh), np.zeros_like(by) # memory variables for Adagrad
smooth_loss = -np.log(1.0 / vocab_size) * seq_length # loss at iteration 0
# MAIN LOOP
while n < 100000:
# prepare inputs (we're sweeping from left to right in steps seq_length long)
if p + seq_length + 1 >= len(data) or n == 0:
hprev = np.zeros((hidden_size, 1)) # reset RNN memory
p = 0 # go from start of data
inputs = [char_to_ix[ch]
for ch in data[p:p + seq_length]] # input characters
# output characters (shifted input by one position to right)
targets = [char_to_ix[ch] for ch in data[p + 1:p + seq_length + 1]]
# sample from the model now and then to identify the improvement
if n % 100 == 0:
sample_ix = sample(hprev, inputs[0], 200)
txt = ''.join(ix_to_char[ix] for ix in sample_ix)
print('----\n %s \n----' % (txt, ))
# forward seq_length characters through the net and fetch gradient
# hprev is the hidden state previous vector
loss, dWxh, dWhh, dWhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)
smooth_loss = smooth_loss * 0.999 + loss * 0.001
if n % 100 == 0:
print('iter %d, loss: %f' % (n, smooth_loss)) # print progress
# perform parameter update with Adagrad
for param, dparam, mem in zip([Wxh, Whh, Why, bh, by],
[dWxh, dWhh, dWhy, dbh, dby],
[mWxh, mWhh, mWhy, mbh, mby]):
mem += dparam * dparam
param += -learning_rate * dparam / \
np.sqrt(mem + 1e-8) # adagrad update
p += seq_length # move data pointer
n += 1 # iteration counter
# gradient checking
from random import uniform
def gradCheck(inputs, target, hprev):
global Wxh, Whh, Why, bh, by
num_checks, delta = 10, 1e-5
_, dWxh, dWhh, dWhy, dbh, dby, _ = lossFun(inputs, targets, hprev)
for param, dparam, name in zip([Wxh, Whh, Why, bh, by], [dWxh, dWhh, dWhy, dbh, dby], ['Wxh', 'Whh', 'Why', 'bh', 'by']):
s0 = dparam.shape
s1 = param.shape
assert (s0 == s1), "Error dims dont match: %s and %s." % (s0, s1)
print(name)
for i in range(num_checks):
ri = int(uniform(0, param.size))
# evaluate cost at [x + delta] and [x - delta]
old_val = param.flat[ri]
param.flat[ri] = old_val + delta
cg0, _, _, _, _, _, _ = lossFun(inputs, targets, hprev)
param.flat[ri] = old_val - delta
cg1, _, _, _, _, _, _ = lossFun(inputs, targets, hprev)
param.flat[ri] = old_val # reset old value for this parameter
# fetch both numerical and analytic gradient
grad_analytic = dparam.flat[ri]
grad_numerical = (cg0 - cg1) / (2 * delta)
rel_error = abs(grad_analytic - grad_numerical) / \
abs(grad_numerical + grad_analytic)
print('%f, %f => %e ' % (grad_numerical, grad_analytic, rel_error))
# rel_error should be on order of 1e-7 or less
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment