Skip to content

Instantly share code, notes, and snippets.

@smarky7CD
Created July 31, 2023 20:11
Show Gist options
  • Save smarky7CD/7864e6caeb229d2e4daaba2351a66aa8 to your computer and use it in GitHub Desktop.
Save smarky7CD/7864e6caeb229d2e4daaba2351a66aa8 to your computer and use it in GitHub Desktop.
Implements an educational version of the Unbalanced Oil and Vinegar Scheme. This is not cryptographically secure code, do not use for anything beyond learning purposes.
# Sam A. Markelon
# 6/21/23
# Implements an educational version of the Unbalanced Oil and Vinegar Scheme
# This version sets linear and constant terms always to 0, only leaving random homogenous terms of degree 2
# See:
# http://www.goubin.fr/papers/OILLONG.PDF Section 10 Remark
# https://researchspace.auckland.ac.nz/bitstream/handle/2292/62095/Cherkashin-2022-thesis.pdf?sequence=1&isAllowed=y Remark 1
# pip3 install numpy
import numpy as np
# pip3 install galois
import galois
GF256 = galois.GF(2**8)
# helper functions
def generate_random_polynomial(o,v):
f_i = np.vstack(
(np.hstack((np.zeros((o,o),dtype=np.uint8),np.random.randint(256, size=(o,v), dtype=np.uint8))),
np.random.randint(256, size=(v,v+o),dtype=np.uint8))
)
f_i_triu = np.triu(f_i)
return GF256(f_i_triu)
def generate_central_map(o,v):
F = []
for _ in range(o):
F.append(generate_random_polynomial(o,v))
return F
def generate_affine_L(o,v):
found = False
while not found:
try:
L_n = np.random.randint(256, size=(o+v,o+v), dtype=np.uint8)
L = GF256(L_n)
L_inv = np.linalg.inv(L)
found = True
except:
found = False
return L, L_inv
def generate_random_vinegar(v):
vv = np.random.randint(256, size=v, dtype=np.uint8)
rvv = GF256(vv)
return rvv
def sub_vinegar_aux(rvv,f,o,v):
coeffs = GF256([0]* (o+1))
# oil variables are in 0 <= i < o
# vinegar variables are in o <= i < n
for i in range(o+v):
for j in range(i,o+v):
# by cases
# oil and oil do not mix
if i < o and j < o:
pass
# vinegar and vinegar contribute to a constant
elif i >=o and j >= o:
ij = GF256(f[i,j])
vvi = GF256(rvv[i-o])
vvj = GF256(rvv[j-o])
coeffs[-1] += np.multiply(np.multiply(ij,vvi), vvj)
# have mixed oil and vinegar variables that contribute to o_i coeff
elif i < o and j >= o:
ij = GF256(f[i,j])
vvj = GF256(rvv[j-o])
coeffs[i] += np.multiply(ij,vvj)
# condition is not hit as we have covered all combos
else:
pass
return coeffs
def sub_vinegar(rvv,F,o,v):
subbed_rvv_F = []
for f in F:
subbed_rvv_F.append(sub_vinegar_aux(rvv,f,o,v))
los = GF256(subbed_rvv_F)
return los
# main functions
def generate_private_key(o,v):
F = generate_central_map(o,v)
L, L_inv = generate_affine_L(o,v)
return F, L, L_inv
def generate_public_key(F,L):
L_T = np.transpose(L)
P = []
for f in F:
s1 = np.matmul(L_T,f)
s2 = np.matmul(s1,L)
P.append(s2)
return P
def sign(F,L_inv,o,v,m):
signed = False
while not signed:
try:
rvv = generate_random_vinegar(v)
los = sub_vinegar(rvv,F,o,v)
M = GF256(los[:, :-1])
c = GF256(los[:, [-1]])
y = np.subtract(m,c)
x = np.vstack((np.linalg.solve(M,y), rvv.reshape(v,1)))
s = np.matmul(L_inv, x)
signed = True
except:
signed = False
return s
def verify(P,s,m):
cmparts= []
s_T = np.transpose(s)
for f_p in P:
cmp1 = np.matmul(s_T,f_p)
cmp2 = np.matmul(cmp1,s)
cmparts.append(cmp2[0])
computed_m = GF256(cmparts)
return computed_m, np.array_equal(computed_m,m)
# test over the entire space of messages for small parameters
def test():
o = 2
v = 4
F, L, L_inv = generate_private_key(o,v)
P = generate_public_key(F,L)
total_tests = 0
tests_passed =0
for m1 in range(256):
for m2 in range(256):
total_tests+=1
m = GF256([[m1],[m2]])
s = sign(F,L_inv,o,v,m)
computed_m,verified = verify(P,s,m)
if verified:
tests_passed+=1
print(f"Test: {total_tests}\nMessage:\n{m}\nSignature:\n{s}\nVerified:\n{verified}\n")
print(f"{tests_passed} out of {total_tests} messages verified.")
# illustrative example
def example():
# field information
print(f"{GF256.properties}\n")
# parameters
o = 3
v = 6
print(f"The parameters are o={o} and v={v}.\n")
# generate keys
# private key
F, L, L_inv = generate_private_key(o,v)
print("Private Key:\n")
print("Central Map:")
for i,f in enumerate(F):
print(f"{i}:\n {f}\n")
print(f"Secret Transformation L=:\n{L}\n")
print(f"Secret Inverse Transformation L_inv=:\n{L_inv}\n")
print(f"Confirming L is invertible as L*L_inv is I=:\n {np.matmul(L,L_inv)}\n")
# public key
P = generate_public_key(F,L)
print("Public Key = F ∘ L = \n")
for i,f_p in enumerate(P):
print(f"{i}:\n{f_p}\n")
# message
m = GF256([[10],[25],[11]])
print(f"Message m (Évariste Galois's Birthday - 1811 that is!):\n{m}\n")
# signing
# generate random vinegar variables
rvv = generate_random_vinegar(v)
print(f"Random vinegar values:\n{rvv}\n")
# sub vinegar variables
los = sub_vinegar(rvv,F,o,v)
print(f"Substituted random vinegar variables:\n{los}\n")
# subtract constant terms from message to get linear system
M = GF256(los[:, :-1])
c = GF256(los[:, [-1]])
y = np.subtract(m,c)
print("We separate out the constant terms of the linear oil system and subtract them from the message values to solve the linear system using Gaussian elimination.")
print(f"y = m-c =\n {m} \n-\n {c}\n =\n {y}\n")
print(f"f(o1,o2,o3) =\n {M}|{y}\n")
# solve the linear system
x_o = np.linalg.solve(M,y)
x = np.vstack((x_o, rvv.reshape(v,1)))
print(f"This yields the solution o1,o2,o3 =\n {x_o}\n")
print(f"We stack this solution with our random vinegar variables to form a complete solution to the non-linear multivariate polynomial system of equations:\n {x}\n")
# checking out solution
print("We can check out solution by plugging them into the central map.")
x_T = np.transpose(x)
cmpartsc = []
for f in F:
cmcp1 = np.matmul(x_T,f)
cmcp2 = np.matmul(cmcp1,x)
cmpartsc.append(cmcp2[0])
computed_mc = GF256(cmpartsc)
print(f"m = x_T F x =\n {computed_mc}\n")
# compute signature
s = np.matmul(L_inv,x)
print(f"Finally we compute our signature as:")
print(f"sig = L_inv * x =\n {s}\n")
# verification
print("Now let's see if our signature correctly given our public_key and message:")
s_T = np.transpose(s)
cmparts= []
for f_p in P:
cmp1 = np.matmul(s_T,f_p)
cmp2 = np.matmul(cmp1,s)
cmparts.append(cmp2[0])
computed_m = GF256(cmparts)
print(f"computed message = sig_T pub_key sig =\n{computed_m}\n")
print(f"computed message == message is {np.array_equal(computed_m,m)}")
# main
if __name__ == "__main__":
#test()
example()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment