Last active
September 5, 2024 19:18
-
-
Save smhanov/94230b422c2100ae4218 to your computer and use it in GitHub Desktop.
Use a DAWG as a map
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/python3 | |
# By Steve Hanov, 2011. Released to the public domain. | |
# Please see http://stevehanov.ca/blog/index.php?id=115 for the accompanying article. | |
# | |
# Based on Daciuk, Jan, et al. "Incremental construction of minimal acyclic finite-state automata." | |
# Computational linguistics 26.1 (2000): 3-16. | |
# | |
# Updated 2014 to use DAWG as a mapping; see | |
# Kowaltowski, T.; CL. Lucchesi (1993), "Applications of finite automata representing large vocabularies", | |
# Software-Practice and Experience 1993 | |
import sys | |
import time | |
DICTIONARY = "/usr/share/dict/words" | |
QUERY = sys.argv[1:] | |
# This class represents a node in the directed acyclic word graph (DAWG). It | |
# has a list of edges to other nodes. It has functions for testing whether it | |
# is equivalent to another node. Nodes are equivalent if they have identical | |
# edges, and each identical edge leads to identical states. The __hash__ and | |
# __eq__ functions allow it to be used as a key in a python dictionary. | |
class DawgNode: | |
NextId = 0 | |
def __init__(self): | |
self.id = DawgNode.NextId | |
DawgNode.NextId += 1 | |
self.final = False | |
self.edges = {} | |
# Number of end nodes reachable from this one. | |
self.count = 0 | |
def __str__(self): | |
arr = [] | |
if self.final: | |
arr.append("1") | |
else: | |
arr.append("0") | |
for (label, node) in self.edges.items(): | |
arr.append( label ) | |
arr.append( str( node.id ) ) | |
return "_".join(arr) | |
def __hash__(self): | |
return self.__str__().__hash__() | |
def __eq__(self, other): | |
return self.__str__() == other.__str__() | |
def numReachable(self): | |
# if a count is already assigned, return it | |
if self.count: return self.count | |
# count the number of final nodes that are reachable from this one. | |
# including self | |
count = 0 | |
if self.final: count += 1 | |
for label, node in self.edges.items(): | |
count += node.numReachable() | |
self.count = count | |
return count | |
class Dawg: | |
def __init__(self): | |
self.previousWord = "" | |
self.root = DawgNode() | |
# Here is a list of nodes that have not been checked for duplication. | |
self.uncheckedNodes = [] | |
# Here is a list of unique nodes that have been checked for | |
# duplication. | |
self.minimizedNodes = {} | |
# Here is the data associated with all the nodes | |
self.data = [] | |
def insert( self, word, data ): | |
if word <= self.previousWord: | |
raise Exception("Error: Words must be inserted in alphabetical " + | |
"order.") | |
# find common prefix between word and previous word | |
commonPrefix = 0 | |
for i in range( min( len( word ), len( self.previousWord ) ) ): | |
if word[i] != self.previousWord[i]: break | |
commonPrefix += 1 | |
# Check the uncheckedNodes for redundant nodes, proceeding from last | |
# one down to the common prefix size. Then truncate the list at that | |
# point. | |
self._minimize( commonPrefix ) | |
self.data.append(data) | |
# add the suffix, starting from the correct node mid-way through the | |
# graph | |
if len(self.uncheckedNodes) == 0: | |
node = self.root | |
else: | |
node = self.uncheckedNodes[-1][2] | |
for letter in word[commonPrefix:]: | |
nextNode = DawgNode() | |
node.edges[letter] = nextNode | |
self.uncheckedNodes.append( (node, letter, nextNode) ) | |
node = nextNode | |
node.final = True | |
self.previousWord = word | |
def finish( self ): | |
# minimize all uncheckedNodes | |
self._minimize( 0 ); | |
# go through entire structure and assign the counts to each node. | |
self.root.numReachable() | |
def _minimize( self, downTo ): | |
# proceed from the leaf up to a certain point | |
for i in range( len(self.uncheckedNodes) - 1, downTo - 1, -1 ): | |
(parent, letter, child) = self.uncheckedNodes[i]; | |
if child in self.minimizedNodes: | |
# replace the child with the previously encountered one | |
parent.edges[letter] = self.minimizedNodes[child] | |
else: | |
# add the state to the minimized nodes. | |
self.minimizedNodes[child] = child; | |
self.uncheckedNodes.pop() | |
def lookup( self, word ): | |
node = self.root | |
skipped = 0 # keep track of number of final nodes that we skipped | |
for letter in word: | |
if letter not in node.edges: return None | |
for label, child in sorted(node.edges.items()): | |
if label == letter: | |
if node.final: skipped += 1 | |
node = child | |
break | |
skipped += child.count | |
if node.final: | |
return self.data[skipped] | |
def nodeCount( self ): | |
return len(self.minimizedNodes) | |
def edgeCount( self ): | |
count = 0 | |
for node in self.minimizedNodes: | |
count += len(node.edges) | |
return count | |
def display(self): | |
stack = [self.root] | |
done = set() | |
while stack: | |
node = stack.pop() | |
if node.id in done: continue | |
done.add(node.id) | |
print("{}: ({})".format(node.id, node)) | |
for label, child in node.edges.items(): | |
print(" {} goto {}".format(label, child.id)) | |
stack.append(child) | |
if 0: | |
dawg = Dawg() | |
dawg.insert("cat", 0) | |
dawg.insert("catnip", 1) | |
dawg.insert("zcatnip", 2) | |
dawg.finish() | |
dawg.display() | |
sys.exit() | |
dawg = Dawg() | |
WordCount = 0 | |
words = open(DICTIONARY, "rt").read().split() | |
words.sort() | |
start = time.time() | |
for word in words: | |
WordCount += 1 | |
# insert all words, using the reversed version as the data associated with | |
# it | |
dawg.insert(word, ''.join(reversed(word))) | |
if ( WordCount % 100 ) == 0: print("{0}\r".format(WordCount), end="") | |
dawg.finish() | |
print("Dawg creation took {0} s".format(time.time()-start)) | |
EdgeCount = dawg.edgeCount() | |
print("Read {0} words into {1} nodes and {2} edges".format( | |
WordCount, dawg.nodeCount(), EdgeCount)) | |
print("This could be stored in as little as {0} bytes".format(EdgeCount * 4)) | |
for word in QUERY: | |
result = dawg.lookup(word) | |
if result == None: | |
print("{0} not in dictionary.".format(word)) | |
else: | |
print("{0} is in the dictionary and has data {1}".format(word, result)) |
@dhrushilbadani The original paper "Incremental construction of minimal acyclic finite-state automata." also had an algorithm for non-sorted input, but at the time I thought it was too complicated for my blog entry.
Another option: The Unix sort command is magical and optimized for very large files. Usually when something is too expensive to sort, I will pipe it through "sort" and get the results.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
@smhanov makes sense, thanks for the reply! Also, what can one do when sorting the input strings is too expensive?