This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
############################################################################### | |
# p3FGL.py | |
############################################################################### | |
# | |
# Plot Fermi 3FGL PS catalog histogram | |
# Usage: | |
# | |
# p = plot_3FGL() | |
# x_counts, y_counts, error_L, error_H, x_errors_L, x_errors_H = \ | |
# p.return_counts(flux_min = 5e-11, | |
# flux_max = 1e-7, | |
# flux_bins = 12) | |
# # Plot F^2*dN/dF: | |
# plt.errorbar(x_counts,x_counts**2*y_counts,xerr=[x_errors_L,x_errors_H], | |
# yerr=x_counts**2*np.array([error_L,error_H]), fmt='o', | |
# color='black', label='3FGL PS') | |
# | |
############################################################################### | |
import numpy as np | |
import pandas as pd | |
import healpy as hp | |
import numpy as np | |
from scipy.integrate import quad | |
from scipy.stats import chi2 | |
class plot_3FGL(): | |
def __init__(self): | |
self.load_3FGL_data() | |
self.errors_sigma = [poisson_interval(i) for i in range(1500)] | |
def load_3FGL_data(self): | |
# Load in the 3FGL catalog | |
self.source_3fg_df = pd.read_csv('3fgl.dat', sep='|', comment='#') | |
# Remove whitespace from column names | |
self.source_3fg_df.rename(columns=lambda x: x.strip(), inplace=True) | |
for col in self.source_3fg_df.columns.values: | |
try: | |
self.source_3fg_df[col] = self.source_3fg_df[ | |
col].map(str.strip) | |
except TypeError: | |
continue | |
# Convert to numeric data | |
self.source_3fg_df = self.source_3fg_df.convert_objects( | |
convert_numeric=True) | |
def lb2pix(self, nside, l, b, nest=False): | |
""" Convert right ascension and descent to galactic | |
coordinates, then get index corresponding to HEALPix array | |
""" | |
return hp.ang2pix(nside, np.deg2rad(90 - b), np.deg2rad(l), nest=nest) | |
def return_counts(self, emin=2., emax=20., flux_min=7e-12, flux_max=4e-10, flux_bins=14, nside=128, mask=None): | |
""" Return histogrammed source counts from 3FGL data | |
""" | |
self.nside = nside | |
self.mask_total = mask | |
self.energy_range = [emin, emax] | |
self.area_factor = 1. | |
# Reduce dataframe to unmasked region | |
if self.mask_total is not None: | |
to_include = [] | |
for i in range(len(self.source_3fg_df)): | |
source_pix = (self.lb2pix(self.nside, self.source_3fg_df[ | |
'_Lii'].values[i], self.source_3fg_df['_Bii'].values[i])) | |
if self.mask_total[source_pix] == 0: | |
to_include.append(i) | |
self.source_3fg_df = self.source_3fg_df.iloc[to_include] | |
self.area_factor = 1. - \ | |
np.sum(self.mask_total) / float(hp.nside2npix(self.nside)) | |
self.fluxes_3fgl = [] | |
for index, row in self.source_3fg_df.iterrows(): | |
if row['spectrum_type'] == 'PowerLaw': | |
flux = [quad(lambda E: y_powerlaw(E, .001 * row['pivot_energy'], 1000 * row['flux_density'], row['spectral_index']), | |
self.energy_range[i], self.energy_range[i + 1])[0] for i in range(len(self.energy_range) - 1)] | |
elif row['spectrum_type'] == 'LogParabola': | |
flux = [quad(lambda E: y_logparabola(E, .001 * row['pivot_energy'], 1000 * row['flux_density'], row['spectral_index'], | |
row['beta']), self.energy_range[i], self.energy_range[i + 1])[0] for i in range(len(self.energy_range) - 1)] | |
elif row['spectrum_type'] == 'PLExpCutoff': | |
flux = [quad(lambda E: y_expcutoff(E, .001 * row['pivot_energy'], 1000 * row['flux_density'], row['spectral_index'], | |
.001 * row['cutoff'], row['exp_index']), self.energy_range[i], self.energy_range[i + 1])[0] for i in range(len(self.energy_range) - 1)] | |
self.fluxes_3fgl.append(flux) | |
flux_values_reduced = self.fluxes_3fgl | |
deg = 180 / np.pi | |
sr = 4 * np.pi | |
srdeg2 = sr * deg**2 # (180/np.pi)**2 | |
counts, bin_edges = np.histogram(flux_values_reduced, bins=np.logspace( | |
int(np.log10(flux_min)), int(np.log10(flux_max)), flux_bins)) | |
bin_centres = 10**((np.log10(bin_edges[:-1]) + | |
np.log10(bin_edges[1:])) / 2.) | |
bin_centers = bin_centres # British to American | |
bin_width = bin_edges[1:] - bin_edges[:-1] | |
x_counts = bin_centres | |
y_counts = np.array(counts / (self.area_factor * bin_width * srdeg2)) | |
y_counts_err = np.array( | |
np.sqrt(counts) / (self.area_factor * bin_width * srdeg2)) | |
errors = [self.errors_sigma[count] for count in counts] | |
error_L = [] | |
error_H = [] | |
for i in range(len(counts)): | |
error_L.append(counts[i] - errors[i][0] - 10**-8) | |
error_H.append(errors[i][1] - counts[i]) | |
self.error_L = np.array(error_L) / \ | |
(self.area_factor * bin_width * srdeg2) | |
self.error_H = np.array(error_H) / \ | |
(self.area_factor * bin_width * srdeg2) | |
self.x_errors_L = np.array( | |
[bin_centers[i] - bin_edges[i] for i in range(np.size(bin_centers))]) | |
self.x_errors_H = np.array( | |
[bin_edges[i + 1] - bin_centers[i] for i in range(np.size(bin_centers))]) | |
return x_counts, y_counts, self.error_L, self.error_H, self.x_errors_L, self.x_errors_H | |
# 3FGL fit functions | |
def y_powerlaw(E, E0, K, Gamma): | |
return K * (E / E0)**(-Gamma) | |
def y_logparabola(E, E0, K, Gamma, beta): | |
return K * (E / E0)**(-Gamma - beta * np.log(E / E0)) | |
def y_expcutoff(E, E0, K, Gamma, Ec, b): | |
return K * (E / E0)**(-Gamma) * np.exp((E0 / Ec)**b - (E / Ec)**b) | |
def poisson_interval(k, alpha=0.32): | |
""" Uses chisquared info to get the poisson interval.poisson | |
Stolen from http://stackoverflow.com/questions/14813530/poisson-confidence-interval-with-numpy | |
""" | |
a = alpha | |
low, high = (chi2.ppf(a/2, 2*k) / 2, chi2.ppf(1-a/2, 2*k + 2) / 2) | |
if k == 0: | |
low = 0.0 | |
return low, high |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment