-
-
Save sobotka/277e844eca9f16d8de7b88d6fdfa0deb to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def open_domain_to_normalized_log2( | |
in_od, | |
in_middle_grey=0.18, | |
minimum_ev=-6.0, | |
maximum_ev=+7.0 | |
): | |
total_exposure = maximum_ev - minimum_ev | |
in_od = numpy.asarray(in_od) | |
in_od[in_od <= 0.0] = numpy.finfo(numpy.float).eps | |
output_log = numpy.clip( | |
numpy.log2(in_od / in_middle_grey), | |
minimum_ev, | |
maximum_ev | |
) | |
return as_numeric((output_log - minimum_ev) / total_exposure) | |
# Convert normalised log value to scene referred linear value. | |
def calculate_log_to_sr( | |
in_log_norm, | |
sr_middle_grey=base_middle_grey, | |
minimum_ev=base_dr_minimum_ev, | |
maximum_ev=base_dr_maximum_ev | |
): | |
in_log_norm = numpy.asarray(in_log_norm) | |
in_log_norm = numpy.clip(in_log_norm, 0., 1.) * ( | |
maximum_ev - minimum_ev) + minimum_ev | |
return as_numeric(numpy.power(2., in_log_norm) * sr_middle_grey) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment