Skip to content

Instantly share code, notes, and snippets.

@solaris33
Last active September 25, 2017 23:53
Show Gist options
  • Save solaris33/8ce9913dea1aa4225876cbcfdd2963be to your computer and use it in GitHub Desktop.
Save solaris33/8ce9913dea1aa4225876cbcfdd2963be to your computer and use it in GitHub Desktop.
# -*- coding: utf-8 -*-
# 절대 임포트 설정
from __future__ import absolute_import
from __future__ import print_function
# 필요한 라이브러리들을 임포트
import collections
import math
import os
import random
import zipfile
import numpy as np
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
# Step 1: 필요한 데이터를 다운로드한다.
url = 'http://mattmahoney.net/dc/'
def maybe_download(filename, expected_bytes):
"""파일이 존재하지 않으면 다운로드하고 사이즈가 적절한지 체크한다."""
if not os.path.exists(filename):
filename, _ = urllib.request.urlretrieve(url + filename, filename)
statinfo = os.stat(filename)
if statinfo.st_size == expected_bytes:
print('Found and verified', filename)
else:
print(statinfo.st_size)
raise Exception(
'Failed to verify ' + filename + '. Can you get to it with a browser?')
return filename
filename = maybe_download('text8.zip', 31344016)
# 문자열로 데이터를 읽는다
def read_data(filename):
"""zip파일 압축을 해제하고 단어들의 리스트를 읽는다."""
with zipfile.ZipFile(filename) as f:
data = f.read(f.namelist()[0]).split()
return data
words = read_data(filename)
print('Data size', len(words))
# Step 2: dictionary를 만들고 UNK 토큰을 이용해서 rare words를 교체(replace)한다.
vocabulary_size = 50000
def build_dataset(words):
count = [['UNK', -1]]
count.extend(collections.Counter(words).most_common(vocabulary_size - 1))
dictionary = dict()
for word, _ in count:
dictionary[word] = len(dictionary)
data = list()
unk_count = 0
for word in words:
if word in dictionary:
index = dictionary[word]
else:
index = 0 # dictionary['UNK']
unk_count += 1
data.append(index)
count[0][1] = unk_count
reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
return data, count, dictionary, reverse_dictionary
data, count, dictionary, reverse_dictionary = build_dataset(words)
del words # Hint to reduce memory.
print('Most common words (+UNK)', count[:5])
print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]])
data_index = 0
# Step 3: skip-gram model을 위한 트레이닝 데이터(batch)를 생성하기 위한 함수.
def generate_batch(batch_size, num_skips, skip_window):
global data_index
assert batch_size % num_skips == 0
assert num_skips <= 2 * skip_window
batch = np.ndarray(shape=(batch_size), dtype=np.int32)
labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32)
span = 2 * skip_window + 1 # [ skip_window target skip_window ]
buffer = collections.deque(maxlen=span)
for _ in range(span):
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
for i in range(batch_size // num_skips):
target = skip_window # target label at the center of the buffer
targets_to_avoid = [ skip_window ]
for j in range(num_skips):
while target in targets_to_avoid:
target = random.randint(0, span - 1)
targets_to_avoid.append(target)
batch[i * num_skips + j] = buffer[skip_window]
labels[i * num_skips + j, 0] = buffer[target]
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
return batch, labels
batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1)
for i in range(8):
print(batch[i], reverse_dictionary[batch[i]],
'->', labels[i, 0], reverse_dictionary[labels[i, 0]])
# Step 4: skip-gram model 만들고 학습시킨다.
batch_size = 128
embedding_size = 128 # embedding vector의 크기.
skip_window = 1 # 윈도우 크기 : 왼쪽과 오른쪽으로 얼마나 많은 단어를 고려할지를 결정.
num_skips = 2 # 레이블(label)을 생성하기 위해 인풋을 얼마나 많이 재사용 할 것인지를 결정.
# sample에 대한 validation set은 원래 랜덤하게 선택해야한다. 하지만 여기서는 validation samples을
# 가장 자주 생성되고 낮은 숫자의 ID를 가진 단어로 제한한다.
valid_size = 16 # validation 사이즈.
valid_window = 100 # 분포의 앞부분(head of the distribution)에서만 validation sample을 선택한다.
valid_examples = np.random.choice(valid_window, valid_size, replace=False)
num_sampled = 64 # sample에 대한 negative examples의 개수.
graph = tf.Graph()
with graph.as_default():
# 트레이닝을 위한 인풋 데이터들
train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
# Ops and variables pinned to the CPU because of missing GPU implementation
with tf.device('/cpu:0'):
# embedding vectors 행렬을 랜덤값으로 초기화
embeddings = tf.Variable(
tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
# 행렬에 트레이닝 데이터를 지정
embed = tf.nn.embedding_lookup(embeddings, train_inputs)
# NCE loss를 위한 변수들을 선언
nce_weights = tf.Variable(
tf.truncated_normal([vocabulary_size, embedding_size],
stddev=1.0 / math.sqrt(embedding_size)))
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
# batch의 average NCE loss를 계산한다.
# tf.nce_loss 함수는 loss를 평가(evaluate)할 때마다 negative labels을 가진 새로운 샘플을 자동적으로 생성한다.
loss = tf.reduce_mean(
tf.nn.nce_loss(weights=nce_weights,
biases=nce_biases,
labels=train_labels,
inputs=embed,
num_sampled=num_sampled,
num_classes=vocabulary_size))
# SGD optimizer를 생성한다.
optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)
# minibatch examples과 모든 embeddings에 대해 cosine similarity를 계산한다.
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
normalized_embeddings = embeddings / norm
valid_embeddings = tf.nn.embedding_lookup(
normalized_embeddings, valid_dataset)
similarity = tf.matmul(
valid_embeddings, normalized_embeddings, transpose_b=True)
# Step 5: 트레이닝을 시작한다.
num_steps = 100001
with tf.Session(graph=graph) as session:
# 트레이닝을 시작하기 전에 모든 변수들을 초기화한다.
tf.initialize_all_variables().run()
print("Initialized")
average_loss = 0
for step in xrange(num_steps):
batch_inputs, batch_labels = generate_batch(
batch_size, num_skips, skip_window)
feed_dict = {train_inputs : batch_inputs, train_labels : batch_labels}
# optimizer op을 평가(evaluating)하면서 한 스텝 업데이트를 진행한다.
_, loss_val = session.run([optimizer, loss], feed_dict=feed_dict)
average_loss += loss_val
if step % 2000 == 0:
if step > 0:
average_loss /= 2000
# 평균 손실(average loss)은 지난 2000 배치의 손실(loss)로부터 측정된다.
print("Average loss at step ", step, ": ", average_loss)
average_loss = 0
# Note that this is expensive (~20% slowdown if computed every 500 steps)
if step % 10000 == 0:
sim = similarity.eval()
for i in xrange(valid_size):
valid_word = reverse_dictionary[valid_examples[i]]
top_k = 8 # nearest neighbors의 개수
nearest = (-sim[i, :]).argsort()[1:top_k+1]
log_str = "Nearest to %s:" % valid_word
for k in xrange(top_k):
close_word = reverse_dictionary[nearest[k]]
log_str = "%s %s," % (log_str, close_word)
print(log_str)
final_embeddings = normalized_embeddings.eval()
# Step 6: embeddings을 시각화한다.
def plot_with_labels(low_dim_embs, labels, filename='tsne.png'):
assert low_dim_embs.shape[0] >= len(labels), "More labels than embeddings"
plt.figure(figsize=(18, 18)) #in inches
for i, label in enumerate(labels):
x, y = low_dim_embs[i,:]
plt.scatter(x, y)
plt.annotate(label,
xy=(x, y),
xytext=(5, 2),
textcoords='offset points',
ha='right',
va='bottom')
plt.savefig(filename)
try:
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
plot_only = 500
low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only,:])
labels = [reverse_dictionary[i] for i in xrange(plot_only)]
plot_with_labels(low_dim_embs, labels)
except ImportError:
print("Please install sklearn and matplotlib to visualize embeddings.")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment