Skip to content

Instantly share code, notes, and snippets.

@soren
Created Oct 29, 2013
Embed
What would you like to do?
A Hadoop Word Count example using built-in map and reduce classes. Tested with Java 1.6 and Hadoop 1.0.4.
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.map.TokenCounterMapper;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.reduce.IntSumReducer;
public class WordCount {
public static void main(String[] args) throws Exception {
Job job = new Job(new Configuration(), "Word Count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenCounterMapper.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment