Created
June 22, 2015 21:35
-
-
Save soumith/3f87517ad69e1620c70d to your computer and use it in GitHub Desktop.
LSUN eyescream
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
model_G = nn.Sequential() | |
model_G:add(nn.JoinTable(2, 2)) | |
model_G:add(cudnn.SpatialConvolutionUpsample(3+1, 64, 7, 7, 1, 1)):add(cudnn.ReLU(true)) | |
model_G:add(nn.SpatialBatchNormalization(64, nil, nil, false)) | |
model_G:add(cudnn.SpatialConvolutionUpsample(64, 368, 7, 7, 1, 4)):add(cudnn.ReLU(true)) | |
model_G:add(nn.SpatialBatchNormalization(368, nil, nil, false)) | |
model_G:add(nn.SpatialDropout(0.5)) | |
model_G:add(cudnn.SpatialConvolutionUpsample(368, 128, 7, 7, 1, 4)):add(cudnn.ReLU(true)) | |
model_G:add(nn.SpatialBatchNormalization(128, nil, nil, false)) | |
model_G:add(nn.FeatureLPPooling(2,2,2,true)) | |
model_G:add(cudnn.SpatialConvolutionUpsample(64, 224, 5, 5, 1, 2)):add(cudnn.ReLU(true)) | |
model_G:add(nn.SpatialBatchNormalization(224, nil, nil, false)) | |
model_G:add(nn.SpatialDropout(0.5)) | |
model_G:add(cudnn.SpatialConvolutionUpsample(224, 3, 7, 7, 1, 1)) | |
model_G:add(nn.SpatialBatchNormalization(3, nil, nil, false)) | |
model_G:add(nn.View(opt.geometry[1], opt.geometry[2], opt.geometry[3])) | |
print(desc_G) | |
--- Discriminator network | |
--- Input: (j x j x 3) image h_k / \tilde{h}_k & (j x j x 3) image l_k | |
--- Output: 1 x 1 scalar propability | |
model_D = nn.Sequential() | |
model_D:add(nn.CAddTable()) | |
model_D:add(cudnn.SpatialConvolution(3, 48, 3, 3)) | |
model_D:add(cudnn.ReLU(true)) | |
model_D:add(cudnn.SpatialConvolution(48, 448, 5, 5, 1, 1, 0, 0, 4)) | |
model_D:add(cudnn.ReLU(true)) | |
model_D:add(cudnn.SpatialConvolution(448, 416, 7, 7, 1, 1, 0, 0, 16)) | |
model_D:add(cudnn.ReLU()) | |
model_D:cuda() | |
ł dummy_input = torch.zeros(opt.batchSize, 3, opt.fineSize, opt.fineSize):cuda() | |
ł out = model_D:forward({dummy_input, dummy_input}) | |
ł nElem = out:nElement() / opt.batchSize | |
model_D:add(nn.View(nElem):setNumInputDims(3)) | |
model_D:add(nn.Linear(nElem, 1)) | |
model_D:add(nn.Sigmoid()) | |
model_D:cuda() | |
print(desc_D) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment