Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
import torch
import torch.nn as nn
import torch.nn.parallel
class DCGAN_D(nn.Container):
def __init__(self, isize, nz, nc, ndf, ngpu, n_extra_layers=0):
super(DCGAN_D, self).__init__()
self.ngpu = ngpu
assert isize % 16 == 0, "isize has to be a multiple of 16"
main = nn.Sequential(
# input is nc x isize x isize
nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
)
i, csize, cndf = 2, isize / 2, ndf
# Extra layers
for t in range(n_extra_layers):
main.add_module(str(i),
nn.Conv2d(cndf, cndf, 3, 1, 1, bias=False))
main.add_module(str(i+1),
nn.BatchNorm2d(cndf))
main.add_module(str(i+2),
nn.LeakyReLU(0.2, inplace=True))
i += 3
while csize > 4:
in_feat = cndf
out_feat = cndf * 2
main.add_module(str(i),
nn.Conv2d(in_feat, out_feat, 4, 2, 1, bias=False))
main.add_module(str(i+1),
nn.BatchNorm2d(out_feat))
main.add_module(str(i+2),
nn.LeakyReLU(0.2, inplace=True))
i+=3
cndf = cndf * 2
csize = csize / 2
# state size. K x 4 x 4
main.add_module(str(i),
nn.Conv2d(cndf, 1, 4, 1, 0, bias=False))
self.main = main
def forward(self, input):
gpu_ids = None
if isinstance(input.data, torch.cuda.FloatTensor) and self.ngpu > 1:
gpu_ids = range(self.ngpu)
output = nn.parallel.data_parallel(self.main, input, gpu_ids)
output = output.mean(0)
return output.view(1)
class DCGAN_G(nn.Container):
def __init__(self, isize, nz, nc, ngf, ngpu, n_extra_layers=0):
super(DCGAN_G, self).__init__()
self.ngpu = ngpu
assert isize % 16 == 0, "isize has to be a multiple of 16"
cngf, tisize = ngf//2, 4
while tisize != isize:
cngf = cngf * 2
tisize = tisize * 2
main = nn.Sequential(
# input is Z, going into a convolution
nn.ConvTranspose2d(nz, cngf, 4, 1, 0, bias=False),
nn.BatchNorm2d(cngf),
nn.ReLU(True),
)
i, csize, cndf = 3, 4, cngf
while csize < isize//2:
main.add_module(str(i),
nn.ConvTranspose2d(cngf, cngf//2, 4, 2, 1, bias=False))
main.add_module(str(i+1),
nn.BatchNorm2d(cngf//2))
main.add_module(str(i+2),
nn.ReLU(True))
i += 3
cngf = cngf // 2
csize = csize * 2
# Extra layers
for t in range(n_extra_layers):
main.add_module(str(i),
nn.Conv2d(cngf, cngf, 3, 1, 1, bias=False))
main.add_module(str(i+1),
nn.BatchNorm2d(cngf))
main.add_module(str(i+2),
nn.ReLU(True))
i += 3
main.add_module(str(i),
nn.ConvTranspose2d(cngf, nc, 4, 2, 1, bias=False))
main.add_module(str(i+1), nn.Tanh())
self.main = main
def forward(self, input):
gpu_ids = None
if isinstance(input.data, torch.cuda.FloatTensor) and self.ngpu > 1:
gpu_ids = range(self.ngpu)
return nn.parallel.data_parallel(self.main, input, gpu_ids)
###############################################################################
class DCGAN_D_nobn(nn.Container):
def __init__(self, isize, nz, nc, ndf, ngpu, n_extra_layers=0):
super(DCGAN_D_nobn, self).__init__()
self.ngpu = ngpu
assert isize % 16 == 0, "isize has to be a multiple of 16"
main = nn.Sequential(
# input is nc x isize x isize
nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
)
i, csize, cndf = 2, isize / 2, ndf
# Extra layers
for t in range(n_extra_layers):
main.add_module(str(i),
nn.Conv2d(cndf, cndf, 3, 1, 1, bias=False))
main.add_module(str(i+1),
nn.LeakyReLU(0.2, inplace=True))
i += 2
while csize > 4:
in_feat = cndf
out_feat = cndf * 2
main.add_module(str(i),
nn.Conv2d(in_feat, out_feat, 4, 2, 1, bias=False))
main.add_module(str(i+1),
nn.LeakyReLU(0.2, inplace=True))
i+=2
cndf = cndf * 2
csize = csize / 2
# state size. K x 4 x 4
main.add_module(str(i),
nn.Conv2d(cndf, 1, 4, 1, 0, bias=False))
self.main = main
def forward(self, input):
gpu_ids = None
if isinstance(input.data, torch.cuda.FloatTensor) and self.ngpu > 1:
gpu_ids = range(self.ngpu)
output = nn.parallel.data_parallel(self.main, input, gpu_ids)
output = output.mean(0)
return output.view(1)
class DCGAN_G_nobn(nn.Container):
def __init__(self, isize, nz, nc, ngf, ngpu, n_extra_layers=0):
super(DCGAN_G_nobn, self).__init__()
self.ngpu = ngpu
assert isize % 16 == 0, "isize has to be a multiple of 16"
cngf, tisize = ngf//2, 4
while tisize != isize:
cngf = cngf * 2
tisize = tisize * 2
main = nn.Sequential(
# input is Z, going into a convolution
nn.ConvTranspose2d(nz, cngf, 4, 1, 0, bias=False),
nn.ReLU(True),
)
i, csize, cndf = 3, 4, cngf
while csize < isize//2:
main.add_module(str(i),
nn.ConvTranspose2d(cngf, cngf//2, 4, 2, 1, bias=False))
main.add_module(str(i+1),
nn.ReLU(True))
i += 2
cngf = cngf // 2
csize = csize * 2
# Extra layers
for t in range(n_extra_layers):
main.add_module(str(i),
nn.Conv2d(cngf, cngf, 3, 1, 1, bias=False))
main.add_module(str(i+1),
nn.ReLU(True))
i += 2
main.add_module(str(i),
nn.ConvTranspose2d(cngf, nc, 4, 2, 1, bias=False))
main.add_module(str(i+1), nn.Tanh())
self.main = main
def forward(self, input):
gpu_ids = None
if isinstance(input.data, torch.cuda.FloatTensor) and self.ngpu > 1:
gpu_ids = range(self.ngpu)
return nn.parallel.data_parallel(self.main, input, gpu_ids)
from __future__ import print_function
import argparse
import random
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
from torch.autograd import Variable
import os
import models.dcgan as dcgan
import models.mlp as mlp
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', required=True, help='cifar10 | lsun | imagenet | folder | lfw ')
parser.add_argument('--dataroot', required=True, help='path to dataset')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=2)
parser.add_argument('--batchSize', type=int, default=64, help='input batch size')
parser.add_argument('--imageSize', type=int, default=64, help='the height / width of the input image to network')
parser.add_argument('--nz', type=int, default=100, help='size of the latent z vector')
parser.add_argument('--ngf', type=int, default=64)
parser.add_argument('--ndf', type=int, default=64)
parser.add_argument('--niter', type=int, default=25, help='number of epochs to train for')
parser.add_argument('--lrD', type=float, default=0.00005, help='learning rate for Critic, default=0.0002')
parser.add_argument('--lrG', type=float, default=0.00005, help='learning rate for Generator, default=0.0002')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5')
parser.add_argument('--cuda' , action='store_true', help='enables cuda')
parser.add_argument('--ngpu' , type=int, default=1, help='number of GPUs to use')
parser.add_argument('--netG', default='', help="path to netG (to continue training)")
parser.add_argument('--netD', default='', help="path to netD (to continue training)")
parser.add_argument('--clamp_lower', type=float, default=-0.01)
parser.add_argument('--clamp_upper', type=float, default=0.01)
parser.add_argument('--Diters', type=int, default=5, help='number of D iters per each G iter')
parser.add_argument('--noBN', action='store_true', help='use batchnorm or not (only for DCGAN)')
parser.add_argument('--mlp_G', action='store_true', help='use MLP for G')
parser.add_argument('--mlp_D', action='store_true', help='use MLP for D')
parser.add_argument('--grad_bound', type=float, default=1e10, help='Keep training the disc until the norm of its gradient is below this')
parser.add_argument('--n_extra_layers', type=int, default=0, help='Number of extra layers on gen and disc')
parser.add_argument('--experiment', default=None, help='Where to store samples and models')
parser.add_argument('--adam', action='store_true', help='Whether to use adam (default is rmsprop)')
opt = parser.parse_args()
print(opt)
if opt.experiment is None:
opt.experiment = 'samples'
os.system('mkdir {0}'.format(opt.experiment))
opt.manualSeed = random.randint(1, 10000) # fix seed
print("Random Seed: ", opt.manualSeed)
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
cudnn.benchmark = True
if torch.cuda.is_available() and not opt.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
if opt.dataset in ['imagenet', 'folder', 'lfw']:
# folder dataset
dataset = dset.ImageFolder(root=opt.dataroot,
transform=transforms.Compose([
transforms.Scale(opt.imageSize),
transforms.CenterCrop(opt.imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]))
elif opt.dataset == 'lsun':
dataset = dset.LSUN(db_path=opt.dataroot, classes=['bedroom_train'],
transform=transforms.Compose([
transforms.Scale(opt.imageSize),
transforms.CenterCrop(opt.imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]))
elif opt.dataset == 'cifar10':
dataset = dset.CIFAR10(root=opt.dataroot, download=True,
transform=transforms.Compose([
transforms.Scale(opt.imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
)
assert dataset
dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batchSize,
shuffle=True, num_workers=int(opt.workers))
ngpu = int(opt.ngpu)
nz = int(opt.nz)
ngf = int(opt.ngf)
ndf = int(opt.ndf)
nc = 3
n_extra_layers = int(opt.n_extra_layers)
# custom weights initialization called on netG and netD
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
if opt.noBN:
netG = dcgan.DCGAN_G_nobn(opt.imageSize, nz, nc, ngf, ngpu, n_extra_layers)
elif opt.mlp_G:
netG = mlp.MLP_G(opt.imageSize, nz, nc, ngf, ngpu)
else:
netG = dcgan.DCGAN_G(opt.imageSize, nz, nc, ngf, ngpu, n_extra_layers)
netG.apply(weights_init)
if opt.netG != '': # load checkpoint if needed
netG.load_state_dict(torch.load(opt.netG))
print(netG)
if opt.noBN:
netD = dcgan.DCGAN_D_nobn(opt.imageSize, nz, nc, ndf, ngpu, n_extra_layers)
netD.apply(weights_init)
elif opt.mlp_D:
netD = mlp.MLP_D(opt.imageSize, nz, nc, ndf, ngpu)
else:
netD = dcgan.DCGAN_D(opt.imageSize, nz, nc, ndf, ngpu, n_extra_layers)
netD.apply(weights_init)
if opt.netD != '':
netD.load_state_dict(torch.load(opt.netD))
print(netD)
input = torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize)
noise = torch.FloatTensor(opt.batchSize, nz, 1, 1)
fixed_noise = torch.FloatTensor(opt.batchSize, nz, 1, 1).normal_(0, 1)
one = torch.FloatTensor([1])
mone = one * -1
if opt.cuda:
netD.cuda()
netG.cuda()
input = input.cuda()
one, mone = one.cuda(), mone.cuda()
noise, fixed_noise = noise.cuda(), fixed_noise.cuda()
input = Variable(input)
noise = Variable(noise)
fixed_noise = Variable(fixed_noise)
# setup optimizer
if opt.adam:
optimizerD = optim.Adam(netD.parameters(), lr=opt.lrD, betas=(opt.beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=opt.lrG, betas=(opt.beta1, 0.999))
else:
optimizerD = optim.RMSprop(netD.parameters(), lr = opt.lrD)
optimizerG = optim.RMSprop(netG.parameters(), lr = opt.lrG)
gen_iterations = 0
for epoch in range(opt.niter):
data_iter = iter(dataloader)
i = 0
while i < len(dataloader):
############################
# (1) Update D network
###########################
for p in netD.parameters(): # reset requires_grad
p.requires_grad = True # they are set to False below in netG update
# train the discriminator Diters times
if gen_iterations < 25 or gen_iterations % 500 == 0:
Diters = 100
else:
Diters = opt.Diters
grad_D_norm = 0
j = 0
while (j < Diters or grad_D_norm > opt.grad_bound) and i < len(dataloader):
j += 1
# clamp parameters to a cube
for p in netD.parameters():
p.data.clamp_(opt.clamp_lower, opt.clamp_upper)
data = data_iter.next()
i += 1
# train with real
real_cpu, _ = data
netD.zero_grad()
batch_size = real_cpu.size(0)
input.data.resize_(real_cpu.size()).copy_(real_cpu)
errD_real = netD(input)
errD_real.backward(one)
# train with fake
noise.data.resize_(batch_size, nz, 1, 1)
noise.data.normal_(0, 1)
fake = netG(noise)
input.data.copy_(fake.data)
errD_fake = netD(input)
errD_fake.backward(mone)
errD = errD_real - errD_fake
optimizerD.step()
############################
# (2) Update G network
###########################
for p in netD.parameters():
p.requires_grad = False # to avoid computation
netG.zero_grad()
noise.data.normal_(0, 1)
fake = netG(noise)
errG = netD(fake)
errG.backward(one)
optimizerG.step()
gen_iterations += 1
print('[%d/%d][%d/%d] Loss_D: %f Loss_G: %f Loss_D_real: %f Loss_D_fake %f'
% (epoch, opt.niter, gen_iterations, len(dataloader),
errD.data[0], errG.data[0], errD_real.data[0], errD_fake.data[0]))
if gen_iterations % 500 == 0:
vutils.save_image(real_cpu, '{0}/real_samples.png'.format(opt.experiment))
fake = netG(fixed_noise)
vutils.save_image(fake.data, '{0}/fake_samples_{1}.png'.format(opt.experiment, gen_iterations))
# do checkpointing
torch.save(netG.state_dict(), '{0}/netG_epoch_{1}.pth'.format(opt.experiment, epoch))
torch.save(netD.state_dict(), '{0}/netD_epoch_{1}.pth'.format(opt.experiment, epoch))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.